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Relation prediction in Knowledge graphs

Automatically expand and
complete existing knowledge
bases.

Needs relational reasoning to
make inference.

Applications in e-commerce,
medicine, materials science...




Transductive relation prediction
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Embeddings-based methods
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Embeddings-based methods

Encode each node to a low-dimensional embeddingﬁ]

Use the derived embeddings
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= (Can’t make predictions on H
new nodes.




Limitations of transductive relation prediction

= Problematic for production systems

= Need to re-train to deal with new nodes (e.g., entities, products)
= Predictions can become stale.

= 0O many parameters
= Most transductive approaches have O(|V|) space complexity.

=  Focus on “embedding”-based methodologies.
= Static and unrepresentative benchmarks



Inductive learning: evolving data

School School

Training graph Test graph



Inductive learning: new graphs
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Grall: Inductive learning using GNNs

= A novel approach to learn (X,lives in,Y)
entity-independent 17.(X, spouse_of, Z)A(Z,1ives_in,Y)
relational semantics (rules)
= SOTA performance on
inductive benchmarks

Extremely parameter
efficient
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Grall: Inductive learning using GNNs

= |dea 1: Apply graph neural networks (GNNs) on
the subgraphs surrounding candidate edge.

= |dea 2: Avoid explicit rule induction.

o : Ensure model is expressive enough to
capture logical rules.
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GrallL: Relation prediction via subgraph reasoning

score

1. Extract subgraph around 2. Assign structural labels 3. Run GNN on the
candidate edge to nodes extracted subgraph
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GNN architecture

Neural message-passing approach
a; = AGGREGATE" ({hf':s e N(t)},hf ™),

h¥ = COMBINE® (hf~!, af)
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GNN architecture

Neural message-passing approach
= AGGREGATE" ({hf"':se N(¥)} ,hi ™).

h¥ = COMBINE® (hf~!, af)

Learn a relation-specific
transformation matrix

R
o o kv, k—1
— >J >J rr”r'tStW h
r=1seN,(t)

Separately aggregate across
different types of relations
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GNN architecture

Neural message-passing approach
= AGGREGATE" ({hf"':se N(¥)} ,hi ™).

h¥ = COMBINE® (hf~!, af)

Information aggregated from
the neighborhood

h{ = ReLU (W£,, hy~ ' + af)
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GrallL can learn logical rules

Theorem (Informally): GralL can learn any logical rule of the form:

Tt(X, Y) < EIZl, eey Zk.Tl(X, Zl) A 7“2(Z1, ZQ) VANRTAN Tk(Zk_l,Y)

Example of such a rule:
(X,1lives_in,Y) <« JZ.(X, spouse_of,Z) A (Z,1lives_in,Y)

These “path-based” rules are the foundation of most
state-of-the-art rule induction systems.
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State-of-the-art inductive performance

« (Constructed inductive versions of three standard benchmarks.
« Sampled mutually exclusive subgraphs of varying sizes

» Tested four inductive datasets per each benchmark.

Table: AUC-PR results on inductive relation prediction

WNI8RR FB15k-237 NELL-995
vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
Neural-LP 86.02 83.78 6290 82.06 69.64 76.55 7395 7574 64.66 83.61 &7.58 85.69
DRUM 86.02 84.05 6320 82.06 69.71 7644 74.03 76.20 5986 8399 87.71 85.94
RuleN 90.26 89.01 7646 85.75 7524 88.70 91.24 91.79 84.99 8840 87.20 80.52
GralLL 94.32 94.18 8580 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50




State-of-the-art inductive performance

« Compared against state-of-the-art neural rule induction methods

* Also compared against the best statistical induction approach.

Table: AUC-PR results on inductive relation prediction
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State-of-the-art inductive performance

Table: AUC-PR results on inductive relation prediction

WNI18RR FB15k-237 NELL-995
vl V2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
Neural-LP 86.02 83.78 6290 82.06 69.64 76.55 7395 7574 64.66 83.61 &7.58 85.69
DRUM 86.02 84.05 6320 82.06 69.71 7644 74.03 76.20 5986 8399 87.71 85.94
RuleN 90.26 89.01 7646 85.75 7524 88.70 91.24 91.79 84.99 8840 87.20 80.52
GralL 94.32 94.18 8580 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50




Added benefits

Grall is extremely parameter
efficient compared to the
existing neural rule-induction
methods.

GrallL can naturally leverage
external node
attributes/embeddings
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Ensembling in the transductive setting

Each entry is a pair-wise

Table: Ensemble AUC-PR results on WN18RR
ensemble of two methods

TransE  DistMult ComplEx RotatE GrallL

T 9373 9312 92.45 93.70  94.30
D 93.08 93.12 93.16  95.04
C 92.45 9246  94.78
R 93.55  94.28
G 90.91
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Ensembling in the transductive setting

Each entry is a pair-wise

Table: Ensemble AUC-PR results on WN18RR
ensemble of two methods

TransE  DistMult ComplEx RotatE GrallL

Grall has the lowest

£ 9399 93.12 92.45 93.70 94.30
performance on its own... D 93.08 93.12 93.16  95.04
€ 92.45 92.46 94.78
But ensembling with GrallL 8 93.55 .
G 90.91

leads to the best performance




Architecture details are important!

Nalve subgraph extraction

e Table: Ablation study AUC-PR results
causes severe overfitting

FB (v3) NELL (v3)

Our node labelling and GralL 91.68 93.34
attention schemes are crucial GrallL w/o enclosing subgraph 84.25 85.89

for the theory and for strong GralL w/o node labeling scheme  82.07 84.46
performance. GralL w/o attention in GNN 90.27 87.30




Future directions

e [Extracting interpretable rules from Grall.

e [EXxpanding the class of first-order logical rules that can be represented
beyond the chain-like rules focussed in this work.

e [Extending the generalization capabilities to new relations added to the
knowledge graphs.
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Thank you!

Komal K. Teru
komal.teru@mail.mcaqill.ca

Etienne Denis
etienne.denis@mail.mcaill.ca

William L. Hamilton
wlh@cs.mcaill.ca

Paper: https://arxiv.ora/abs/1911.06962
Code and data: https://qithub.com/kkteru/grail
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