Inductive Relation Prediction by Subgraph Reasoning

Komal K. Teru, Etienne Denis, William L. Hamilton McGill University and Mila – Al Institute of Quebec

Relation prediction in Knowledge graphs

Automatically expand and complete existing knowledge bases.

Needs relational reasoning to make inference.

Applications in e-commerce, medicine, materials science...

Transductive relation prediction

Embeddings-based methods

Encode each node to a low-dimensional embedding Philant. Jenifer nother of Coupation Holly. located_in Savanna lives_in h Marie "mother of L.A lives_in LeBron located_ part_of lives_in founded_by teammate Lakers part_of Akron fav. nba. team School spouse_of A. Davis

Britney

Embeddings-based methods

- Encode each node to a low-dimensional embedding
- Use the derived embeddings to make predictions
 (TransE, RotatE, etc.)
 []

Embeddings-based methods

- Encode each node to a low-dimensional embedding
- Use the derived embeddings to make predictions
 (TransE, RotatE, etc.)
 - Can't make predictions on new nodes.

Limitations of transductive relation prediction

Problematic for production systems

- Need to re-train to deal with new nodes (e.g., entities, products)
- Predictions can become stale.
- Too many parameters
 - Most transductive approaches have O(|V|) space complexity.
- Biases model development
 - Focus on "embedding"-based methodologies.
 - Static and unrepresentative benchmarks

Inductive learning: evolving data

Inductive learning: new graphs

Test graph

GralL: Inductive learning using GNNs

- A novel approach to learn entity-independent relational semantics (rules)
- SOTA performance on inductive benchmarks
- Extremely parameter efficient

 $(X,\texttt{lives_in},Y) \leftarrow \\ \exists Z.(X,\texttt{spouse_of},Z) \land (Z,\texttt{lives_in},Y)$

GralL: Inductive learning using GNNs

 Idea 1: Apply graph neural networks (GNNs) on the subgraphs surrounding candidate edge.

Idea 2: Avoid explicit rule induction.

 Idea 3: Ensure model is expressive enough to capture logical rules.

GralL: Relation prediction via subgraph reasoning

1. Extract subgraph around candidate edge

2. Assign structural labels to nodes

3. Run GNN on the extracted subgraph

GNN architecture

Neural message-passing approach

$$\mathbf{a}_{t}^{k} = \operatorname{AGGREGATE}^{k} \left(\left\{ \mathbf{h}_{s}^{k-1} : s \in \mathcal{N}(t) \right\}, \mathbf{h}_{t}^{k-1} \right), \\ \mathbf{h}_{t}^{k} = \operatorname{COMBINE}^{k} \left(\mathbf{h}_{t}^{k-1}, \mathbf{a}_{t}^{k} \right)$$

GNN architecture

Neural message-passing approach

$$\mathbf{a}_{t}^{k} = \operatorname{AGGREGATE}^{k} \left(\left\{ \mathbf{h}_{s}^{k-1} : s \in \mathcal{N}(t) \right\}, \mathbf{h}_{t}^{k-1} \right), \\ \mathbf{h}_{t}^{k} = \operatorname{COMBINE}^{k} \left(\mathbf{h}_{t}^{k-1}, \mathbf{a}_{t}^{k} \right)$$

$$\mathbf{a}_t^k = \sum_{r=1}^R \sum_{s \in \mathcal{N}_r(t)}$$

Separately aggregate across different types of relations

Learn a relation-specific transformation matrix

$$lpha_{rr_tst}^k \mathbf{W}_r^k \mathbf{h}_s^{k-1}$$

Use attention to weigh
information coming from
different neighbors

GNN architecture

Neural message-passing approach

$$\mathbf{a}_{t}^{k} = \operatorname{AGGREGATE}^{k} \left(\left\{ \mathbf{h}_{s}^{k-1} : s \in \mathcal{N}(t) \right\}, \mathbf{h}_{t}^{k-1} \right), \\ \mathbf{h}_{t}^{k} = \operatorname{COMBINE}^{k} \left(\mathbf{h}_{t}^{k-1}, \mathbf{a}_{t}^{k} \right)$$

Information aggregated from the neighborhood

$$\mathbf{h}_{t}^{k} = \operatorname{ReLU}\left(\mathbf{W}_{self}^{k}\mathbf{h}_{t}^{k-1} + \mathbf{a}_{t}^{k}\right)$$

Information from the nodes embedding at the previous layer

GralL can learn logical rules

Theorem (Informally): GralL can learn any logical rule of the form:

$$r_t(X,Y) \leftarrow \exists Z_1, ..., Z_k.r_1(X,Z_1) \land r_2(Z_1,Z_2) \land ... \land r_k(Z_{k-1},Y)$$

Example of such a rule: $(X, \texttt{lives_in}, Y) \leftarrow \exists Z.(X, \texttt{spouse_of}, Z) \land (Z, \texttt{lives_in}, Y)$

These "path-based" rules are the foundation of most state-of-the-art rule induction systems.

State-of-the-art inductive performance

- Constructed inductive versions of three standard benchmarks.
- Sampled mutually exclusive subgraphs of varying sizes
- Tested four inductive datasets per each benchmark.

	WN18RR				FB15k-237				NELL-995			
	v1	v2	v3	v4	v1	v2	v3	v4	v1	v2	v3	v4
Neural-LP	86.02	83.78	62.90	82.06	69.64	76.55	73.95	75.74	64.66	83.61	87.58	85.69
DRUM	86.02	84.05	63.20	82.06	69.71	76.44	74.03	76.20	59.86	83.99	87.71	85.94
RuleN	90.26	89.01	76.46	85.75	75.24	88.70	91.24	91.79	84.99	88.40	87.20	80.52
GraIL	94.32	94.18	85.80	92.72	84.69	90.57	91.68	94.46	86.05	92.62	93.34	87.50

Table: AUC-PR results on inductive relation prediction

State-of-the-art inductive performance

- Compared against state-of-the-art neural rule induction methods
- Also compared against the best statistical induction approach.

	WN18RR				FB15k-237			NELL-995				
	v1	v2	v3	v4	v 1	v2	v3	v4	v 1	v2	v3	v4
Neural-LP	86.02	83.78	62.90	82.06	69.64	76.55	73.95	75.74	64.66	83.61	87.58	85.69
DRUM	86.02	84.05	63.20	82.06	69.71	76.44	74.03	76.20	59.86	83.99	87.71	85.94
RuleN	<u>90.26</u>	89.01	76.46	85.75	75.24	88.70	91.24	91.79	84.99	88.40	87.20	80.52
GraIL	94.32	94.18	85.80	92.72	84.69	90.57	91.68	94.46	86.05	92.62	93.34	87.50

Table: AUC-PR results on inductive relation prediction

State-of-the-art inductive performance

 <u>Key finding</u>: GralL outperforms all previous approaches on all datasets (analogous results for hits@k)

		100										
	WN18RR				FB15k-237				NELL-995			
	v 1	v2	v3	v 4	v 1	v2	v3	v4	v1	v2	v3	v4
Neural-LP	86.02	83.78	62.90	82.06	69.64	76.55	73.95	75.74	64.66	83.61	87.58	85.69
DRUM	86.02	84.05	63.20	82.06	69.71	76.44	74.03	76.20	59.86	83.99	87.71	85.94
RuleN	90.26	89.01	76.46	<u>85.75</u>	75.24	88.70	<u>91.24</u>	<u>91.79</u>	<u>84.99</u>	88.40	87.20	80.52
GraIL	94.32	94.18	85.80	92.72	84.69	90.57	91.68	94.46	86.05	92.62	93.34	87.50

Table: AUC-PR results on inductive relation prediction

Added benefits

GralL is extremely parameter efficient compared to the existing neural rule-induction methods.

GralL can naturally leverage external node attributes/embeddings

Ensembling in the transductive setting

Each entry is a pair-wise ensemble of two methods

Table: Ensemble AUC-PR results on WN18RR

	TransE	DistMult	ComplEx	RotatE	GraIL
T	93.73	93.12	92.45	93.70	94.30
D		93.08	93.12	93.16	95.04
C			92.45	92.46	94.78
R				93.55	94.28
G					90.91

Ensembling in the transductive setting

Each entry is a pair-wise ensemble of two methods

GralL has the lowest performance on its own

Table: Ensemble AUC-PR results on WN18RR

	TransE	DistMult	ComplEx	RotatE	GraIL
Т	93.73	93.12	92.45	93.70	94.30
D		93.08	93.12	93.16	95.04
C			92.45	92.46	94.78
R				93.55	94.28
G					90.91

Ensembling in the transductive setting

Each entry is a pair-wise ensemble of two methods

GralL has the lowest performance on its own...

But ensembling with GralL leads to the best performance

Table: Ensemble AUC-PR results on WN18RR

	TransE	DistMult	ComplEx	RotatE	GraIL
Т	93.73	93.12	92.45	93.70	94.30
D		93.08	93.12	93.16	95.04
C			92.45	92.46	94.78
R				93.55	94.28
G					90.91

Architecture details are important!

Naïve subgraph extraction causes severe overfitting

Our node labelling and attention schemes are crucial for the theory and for strong performance. FB (v3)NELL (v3)GraIL91.6893.34GraIL w/o enclosing subgraph84.2585.89GraIL w/o node labeling scheme82.0784.46GraIL w/o attention in GNN90.2787.30

Table: Ablation study AUC-PR results

Future directions

- Extracting interpretable rules from GralL.
- Expanding the class of first-order logical rules that can be represented beyond the chain-like rules focussed in this work.
- Extending the generalization capabilities to new relations added to the knowledge graphs.

Thank you!

Komal K. Teru komal.teru@mail.mcgill.ca

Etienne Denis etienne.denis@mail.mcgill.ca

William L. Hamilton <u>wlh@cs.mcgill.ca</u>

Paper: <u>https://arxiv.org/abs/1911.06962</u> Code and data: <u>https://github.com/kkteru/grail</u>