Constant Curvature Graph Convolutional Networks

Ring of Trees

\mathbb{S}^{2}

Gregor
Bachmann
ETH Zürich

Gary
Bécigneul
MIT

Octavian
Ganea
MIT

Overview

Overview

- Embeddings of graphs into hyperbolic and spherical space and their products

Overview

- Embeddings of graphs into hyperbolic and spherical space and their products
- Extend gyrovector framework to spherical geometry and provide a unifying formalism

Overview

- Embeddings of graphs into hyperbolic and spherical space and their products
- Extend gyrovector framework to spherical geometry and provide a unifying formalism
- Introduce graph neural networks producing embeddings in product spaces

Overview

- Embeddings of graphs into hyperbolic and spherical space and their products
- Extend gyrovector framework to spherical geometry and provide a unifying formalism
- Introduce graph neural networks producing embeddings in product spaces
- Differentiable transitions in geometry during training in each component

Graphs

Graphs

- Lots of data available in the form of graphs (social networks, railway tracks, phylogenetic trees etc.)

Graphs

- Lots of data available in the form of graphs (social networks, railway tracks, phylogenetic trees etc.)

Graphs

- Lots of data available in the form of graphs (social networks, railway tracks, phylogenetic trees etc.)

- Node set $\boldsymbol{V}=\{1, \ldots, n\}$ and adjacency matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$

Where to Embed Graphs?

Where to Embed Graphs?

- Euclidean geometry not suitable for many graphs

Where to Embed Graphs?

- Euclidean geometry not suitable for many graphs

Where to Embed Graphs?

- Euclidean geometry not suitable for many graphs

- Graph distance $d_{G}(i, j)=$ "Shortest path from i to j " not respected in Euclidean embedding

Where to Embed Graphs?

- Euclidean geometry not suitable for many graphs

- Graph distance $d_{G}(i, j)=$ "Shortest path from i to j " not respected in Euclidean embedding
- Arbitrary low distortion in spherical and hyperbolic space

Non-Euclidean Geometry

Non-Euclidean Geometry

- Focus on constant sectional curvature manifolds

Non-Euclidean Geometry

- Focus on constant sectional curvature manifolds
- Well-studied in the field of Differential Geometry

Non-Euclidean Geometry

- Focus on constant sectional curvature manifolds
- Well-studied in the field of Differential Geometry
- Computationally attractive expressions for distance, exponential map etc.

Hyperbolic Space as Poincaré Ball

Hyperbolic Space as Poincaré Ball

- $\mathbb{H}^{n}=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq \frac{1}{\sqrt{c}}\right\}$ with curvature $-c$ equipped with Riemannian tensor $g_{x}^{c}=\frac{4}{\left(1-c| | x \|^{2}\right)^{2}} \mathbb{1}$

Hyperbolic Space as Poincaré Ball

- $\mathbb{H}^{n}=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq \frac{1}{\sqrt{c}}\right\}$ with curvature $-c$ equipped with Riemannian tensor $g_{x}^{c}=\frac{4}{\left(1-c| | x \|^{2}\right)^{2}} \mathbb{1}$
- Projection of hyperboloid

Hyperbolic Space as Poincaré Ball

- $\mathbb{H}^{n}=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq \frac{1}{\sqrt{c}}\right\}$ with curvature $-c$ equipped with Riemannian tensor $g_{x}^{c}=\frac{4}{\left(1-c| | x \|^{2}\right)^{2}} \mathbb{1}$
- Projection of hyperboloid
- $d_{\mathbb{H}}^{c}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{\sqrt{c}} \cosh ^{-1}\left(1+\frac{\frac{2}{c}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}{\left(\frac{1}{c}-\|\boldsymbol{x}\|_{2}^{2}\right)\left(\frac{1}{c}-\|\boldsymbol{y}\|_{2}^{2}\right)}\right)$

Heatmap of $d_{\mathbb{H}}^{k}$
Projection of hyperboloid [4]

Gyrospace Structure

Gyrospace Structure

- Next best thing to a vector space

Gyrospace Structure

- Next best thing to a vector space
- Vector addition $\boldsymbol{x}+\boldsymbol{y} \mapsto \boldsymbol{x} \oplus_{c} \boldsymbol{y}$

Gyrospace Structure

- Next best thing to a vector space
- Vector addition $\boldsymbol{x}+\boldsymbol{y} \mapsto \boldsymbol{x} \oplus_{c} \boldsymbol{y}$
- Scalar multiplication $r \boldsymbol{x} \mapsto r \otimes_{c} \boldsymbol{x}$

Gyrospace Structure

- Next best thing to a vector space
- Vector addition $\boldsymbol{x}+\boldsymbol{y} \mapsto \boldsymbol{x} \oplus_{c} \boldsymbol{y}$
- Scalar multiplication $r \boldsymbol{x} \mapsto r \otimes_{c} \boldsymbol{x}$
- Geodesic $\gamma_{\boldsymbol{x} \rightarrow \boldsymbol{y}}(t)=\boldsymbol{x} \oplus_{c}\left(t \otimes_{c}\left(-\boldsymbol{x} \oplus_{c} \boldsymbol{y}\right)\right)$

Spherical Space as Stereographic Projection

Spherical Space as Stereographic Projection

- Stereographic projection of $\mathbb{S}^{d+1} \cong \mathbb{R}^{d}+g_{x}^{c}$ where

$$
g_{x}^{c}=\frac{4}{\left(1+c\|x\|^{2}\right)^{2}} \mathbb{1}
$$

Spherical Space as Stereographic Projection

- Stereographic projection of $\mathbb{S}^{d+1} \cong \mathbb{R}^{d}+g_{x}^{c}$ where

$$
g_{x}^{c}=\frac{4}{\left(1+c\|x\|^{2}\right)^{2}} \mathbb{1}
$$

- $d_{\mathbb{S}}^{c}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{\sqrt{c}} \cos ^{-1}\left(1+\frac{\frac{2}{c}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}{\left(\frac{1}{c}+\|\boldsymbol{x}\|_{2}^{2}\right)\left(\frac{1}{c}+\|\boldsymbol{y}\|_{2}^{2}\right)}\right)$

Spherical Space as Stereographic Projection

- Stereographic projection of $\mathbb{S}^{d+1} \cong \mathbb{R}^{d}+g_{x}^{c}$ where $g_{x}^{c}=\frac{4}{\left(1+c\|x\|^{2}\right)^{2}} \mathbb{1}$
- $d_{\mathbb{S}}^{c}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{\sqrt{c}} \cos ^{-1}\left(1+\frac{\frac{2}{c}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}}{\left(\frac{1}{c}+\|\boldsymbol{x}\|_{2}^{2}\right)\left(\frac{1}{c}+\|\boldsymbol{y}\|_{2}^{2}\right)}\right)$

Our Contributions: 1) Unified Formalism

Our Contributions: 1) Unified Formalism

- κ-stereographic model for any $\kappa \in \mathbb{R}$:

$$
\mathfrak{s t}_{\kappa}^{d}=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid-\kappa\|\boldsymbol{x}\|_{2}^{2}<1\right\}
$$

Our Contributions: 1) Unified Formalism

- κ-stereographic model for any $\kappa \in \mathbb{R}$:

$$
\mathfrak{s t}_{\kappa}^{d}=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid-\kappa\|\boldsymbol{x}\|_{2}^{2}<1\right\}
$$

	\mathbb{R}^{d}	$\mathfrak{s i t}_{\kappa}^{d}$								
$\boldsymbol{x} \oplus_{\kappa} \boldsymbol{y}$	$\boldsymbol{x}+\boldsymbol{y}$	$\frac{\left(1-2 \kappa \boldsymbol{x}^{T} \boldsymbol{y}-\kappa\\|\boldsymbol{y}\\|^{2}\right) \boldsymbol{x}+\left(1+\kappa\\|\boldsymbol{x}\\|^{2}\right) \boldsymbol{y}}{1-2 \kappa \boldsymbol{x}^{T} \boldsymbol{y}+\kappa^{2}\\|\boldsymbol{x}\\|^{2}\\|\boldsymbol{y}\\|^{2}}$								
$r \otimes_{\kappa} \boldsymbol{x}$	$r \boldsymbol{x}$	$\tan _{\kappa}\left(r \cdot \tan _{\kappa}^{-1}\\|\boldsymbol{x}\\|\right) \frac{\boldsymbol{x}}{\\|\boldsymbol{x}\\|}$								
$\gamma_{\boldsymbol{x} \rightarrow \boldsymbol{y}}(t)$	$\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x})$	$\boldsymbol{x} \oplus_{\kappa}\left(t \otimes_{\kappa}\left(-\boldsymbol{x} \oplus_{\kappa} \boldsymbol{y}\right)\right)$								

Our Contributions: 1) Unified Formalism

- κ-stereographic model for any $\kappa \in \mathbb{R}$:

$$
\mathfrak{s t}_{\kappa}^{d}=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid-\kappa\|\boldsymbol{x}\|_{2}^{2}<1\right\}
$$

	\mathbb{R}^{d}	$\mathfrak{s i t}_{\kappa}^{d}$								
$\boldsymbol{x} \oplus_{\kappa} \boldsymbol{y}$	$\boldsymbol{x}+\boldsymbol{y}$	$\frac{\left(1-2 \kappa \boldsymbol{x}^{T} \boldsymbol{y}-\kappa\\|\boldsymbol{y}\\|^{2}\right) \boldsymbol{x}+\left(1+\kappa\\|\boldsymbol{x}\\|^{2}\right) \boldsymbol{y}}{1-2 \kappa \boldsymbol{x}^{T} \boldsymbol{y}+\kappa^{2}\\|\boldsymbol{x}\\|^{2}\\|\boldsymbol{y}\\|^{2}}$								
$r \otimes_{\kappa} \boldsymbol{x}$	$r \boldsymbol{x}$	$\tan _{\kappa}\left(r \cdot \tan _{\kappa}^{-1}\\|\boldsymbol{x}\\|\right) \frac{\boldsymbol{x}}{\\|\boldsymbol{x}\\|}$								
$\gamma_{\boldsymbol{x} \rightarrow \boldsymbol{y}}(t)$	$\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x})$	$\boldsymbol{x} \oplus_{\kappa}\left(t \otimes_{\kappa}\left(-\boldsymbol{x} \oplus_{\kappa} \boldsymbol{y}\right)\right)$								

- More unifying expressions for distance, exponential map etc. in our paper!

Our Contributions: 2) Matrix Multiplications

Our Contributions: 2) Matrix Multiplications

- Embeddings \boldsymbol{X} where $\boldsymbol{X}_{\boldsymbol{i} \bullet} \in \mathfrak{s t}_{\kappa}^{d}, \boldsymbol{W} \in \mathbb{R}^{d \times k}$ and $\boldsymbol{A} \in \mathbb{R}^{n \times n}$

Our Contributions: 2) Matrix Multiplications

- Embeddings \boldsymbol{X} where $\boldsymbol{X}_{\boldsymbol{i} \bullet} \in \mathfrak{s t}_{\kappa}^{d}, \boldsymbol{W} \in \mathbb{R}^{d \times k}$ and $\boldsymbol{A} \in \mathbb{R}^{n \times n}$
- Right matrix multiplication $\boldsymbol{X W}$ acts on columns $\boldsymbol{X}_{\mathbf{0}}$ i

Thus lift to tangent space at zero:

$$
\left(\boldsymbol{X} \otimes_{\kappa} \boldsymbol{W}\right)_{i \bullet}=\exp _{0}^{\kappa}\left(\left(\log _{0}^{\kappa}(\boldsymbol{X}) \boldsymbol{W}\right)_{i \bullet}\right)
$$

Our Contributions: 2) Matrix Multiplications

- Embeddings \boldsymbol{X} where $\boldsymbol{X}_{\boldsymbol{i} \bullet} \in \mathfrak{s t}_{\kappa}^{d}, \boldsymbol{W} \in \mathbb{R}^{d \times k}$ and $\boldsymbol{A} \in \mathbb{R}^{n \times n}$
- Right matrix multiplication $\boldsymbol{X W}$ acts on columns $\boldsymbol{X}_{\boldsymbol{\bullet}}$ i

Thus lift to tangent space at zero:

$$
\left(\boldsymbol{X} \otimes_{\kappa} \boldsymbol{W}\right)_{i \bullet}=\exp _{0}^{\kappa}\left(\left(\log _{0}^{\kappa}(\boldsymbol{X}) \boldsymbol{W}\right)_{i \bullet}\right)
$$

- Introduced in [2], we extended it to spherical spaces

Our Contributions: 2) Matrix Multiplications

Our Contributions: 2) Matrix Multiplications

- Left matrix multiplication $\boldsymbol{A X}$ acts on rows $\boldsymbol{X}_{\boldsymbol{i} \bullet}$:

$$
(\boldsymbol{A X})_{i \bullet}=\boldsymbol{A}_{i 1} \boldsymbol{X}_{1 \bullet}+\cdots+\boldsymbol{A}_{i n} \boldsymbol{X}_{n \bullet}
$$

Our Contributions: 2) Matrix Multiplications

- Left matrix multiplication $\boldsymbol{A X}$ acts on rows $\boldsymbol{X}_{\boldsymbol{i} \boldsymbol{\bullet}}$:

$$
(\boldsymbol{A X})_{i \bullet}=\boldsymbol{A}_{i 1} \boldsymbol{X}_{1 \bullet}+\cdots+\boldsymbol{A}_{i n} \boldsymbol{X}_{n \bullet}
$$

- Idea: Reduce problem of linear combination to definition of a non-euclidean midpoint

Our Contributions: 2) Matrix Multiplications

- Left matrix multiplication $\boldsymbol{A X}$ acts on rows $\boldsymbol{X}_{i \bullet}$:

$$
(\boldsymbol{A X})_{i \bullet}=\boldsymbol{A}_{i 1} \boldsymbol{X}_{1 \bullet}+\cdots+\boldsymbol{A}_{i n} \boldsymbol{X}_{n \bullet}
$$

- Idea: Reduce problem of linear combination to definition of a non-euclidean midpoint

Our Contributions: 2) Matrix Multiplications

Our Contributions: 2) Matrix Multiplications

- Leverage gyromidpoint for hyperbolic space and extend it to $\mathfrak{s t}_{\kappa}^{d}$:

$$
m_{\kappa}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n} ; \boldsymbol{\alpha}\right)=\frac{1}{2} \otimes_{\kappa}\left(\sum_{i=1}^{n} \frac{\alpha_{i} \lambda_{\boldsymbol{x}_{i}}^{\kappa}}{\sum_{j=1}^{n} \alpha_{j}\left(\lambda_{x_{j}}^{\kappa}-1\right)} \boldsymbol{x}_{i}\right)
$$

Our Contributions: 2) Matrix Multiplications

- Leverage gyromidpoint for hyperbolic space and extend it to $\mathfrak{s t}_{\kappa}^{d}$:

$$
m_{\kappa}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n} ; \boldsymbol{\alpha}\right)=\frac{1}{2} \otimes_{\kappa}\left(\sum_{i=1}^{n} \frac{\alpha_{i} \lambda_{\boldsymbol{x}_{i}}^{\kappa}}{\sum_{j=1}^{n} \alpha_{j}\left(\lambda_{x_{j}}^{\kappa}-1\right)} \boldsymbol{x}_{i}\right)
$$

- Define left matrix multiplication row-wise:

$$
\left(\boldsymbol{A} \boxtimes_{\kappa} \boldsymbol{X}\right)_{i \bullet}:=\left(\sum_{j} \boldsymbol{A}_{i j}\right) \otimes_{\kappa} m_{\kappa}\left(\boldsymbol{X}_{1 \bullet}, \cdots, \boldsymbol{X}_{n \bullet} ; \boldsymbol{A}_{i \bullet}\right)
$$

Our Contributions: 2) Matrix Multiplications

- Leverage gyromidpoint for hyperbolic space and extend it to $\mathfrak{s t}_{\kappa}^{d}$:

$$
m_{\kappa}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n} ; \boldsymbol{\alpha}\right)=\frac{1}{2} \otimes_{\kappa}\left(\sum_{i=1}^{n} \frac{\alpha_{i} \lambda_{\boldsymbol{x}_{i}}^{\kappa}}{\sum_{j=1}^{n} \alpha_{j}\left(\lambda_{x_{j}}^{\kappa}-1\right)} \boldsymbol{x}_{i}\right)
$$

- Define left matrix multiplication row-wise:

$$
\left(\boldsymbol{A} \boxtimes_{\kappa} \boldsymbol{X}\right)_{i \bullet}:=\left(\sum_{j} \boldsymbol{A}_{i j}\right) \otimes_{\kappa} m_{\kappa}\left(\boldsymbol{X}_{1 \bullet}, \cdots, \boldsymbol{X}_{n \bullet} ; \boldsymbol{A}_{i \bullet}\right)
$$

- Same scaling behaviour: $d_{\kappa}\left(\mathbf{0}, r \otimes_{\kappa} \boldsymbol{x}\right)=r \cdot d_{\kappa}(\mathbf{0}, \boldsymbol{x})$

Gyromidpoint for Varying Curvature

Our Contributions: 3) Differentiable Interpolation

Our Contributions: 3) Differentiable Interpolation

- All quantities recover their Euclidean counterpart for $\kappa \rightarrow 0^{ \pm}$

Our Contributions: 3) Differentiable Interpolation

- All quantities recover their Euclidean counterpart for $\kappa \rightarrow 0^{ \pm}$
- We proved an even stronger result:

Our Contributions: 3) Differentiable Interpolation

- All quantities recover their Euclidean counterpart for $\kappa \rightarrow 0^{ \pm}$
- We proved an even stronger result:

Differentiability of $\mathfrak{s t}_{\kappa}^{d}$ w.r.t. κ around 0

The first order derivatives at 0^{-}and 0^{+}w.r.t. to κ of all the mentioned quantities exist and are equal.

Our Contributions: 3) Differentiable Interpolation

- All quantities recover their Euclidean counterpart for $\kappa \rightarrow 0^{ \pm}$
- We proved an even stronger result:

Differentiability of $\mathfrak{s t}_{\kappa}^{d}$ w.r.t. κ around 0

The first order derivatives at 0^{-}and 0^{+}w.r.t. to κ of all the mentioned quantities exist and are equal.

- Enables learning the curvature κ with gradient descent with a differentiable change of sign

Our Contributions: 4) Constant Curvature GCN

Our Contributions: 4) Constant Curvature GCN

- Given graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A}, \boldsymbol{X})$ where $\boldsymbol{V}=\{1, \ldots, n\}$, adjacency $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and node-level features $\boldsymbol{X} \in \mathbb{R}^{n \times d}$

Our Contributions: 4) Constant Curvature GCN

- Given graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A}, \boldsymbol{X})$ where $\boldsymbol{V}=\{1, \ldots, n\}$, adjacency $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and node-level features $\boldsymbol{X} \in \mathbb{R}^{n \times d}$
- Graph neural networks are a very popular class of models for inference on graphs

Our Contributions: 4) Constant Curvature GCN

- Given graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A}, \boldsymbol{X})$ where $\boldsymbol{V}=\{1, \ldots, n\}$, adjacency $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and node-level features $\boldsymbol{X} \in \mathbb{R}^{n \times d}$
- Graph neural networks are a very popular class of models for inference on graphs
- We extend the vanilla GCN [3]:

$$
\boldsymbol{H}^{(t+1)}=\sigma\left(\hat{\boldsymbol{A}} \boldsymbol{H}^{(t)} \boldsymbol{W}^{(t)}\right)
$$

for some non-linearity $\sigma, \hat{\boldsymbol{A}}=\tilde{\boldsymbol{D}}^{-\frac{1}{2}}(\boldsymbol{A}+\mathbb{1}) \tilde{\boldsymbol{D}}^{-\frac{1}{2}}$, $\tilde{\boldsymbol{D}}_{i i}=\sum_{k} \tilde{\boldsymbol{A}}_{i k}$ and trainable parameters $\boldsymbol{W}^{(/)}$

Our Contributions: 4) Constant Curvature GCN

Our Contributions: 4) Constant Curvature GCN

- Turn it non-euclidean:

$$
\boldsymbol{H}^{(I+1)}=\sigma^{\otimes_{\kappa}}\left(\hat{\boldsymbol{A}} \boxtimes_{\kappa}\left(\boldsymbol{H}^{(I)} \otimes_{\kappa} \boldsymbol{W}^{(I)}\right)\right)
$$

where $\sigma^{\otimes_{\kappa}}$ is the κ-stereographic version of σ (see paper)

Our Contributions: 4) Constant Curvature GCN

- Turn it non-euclidean:

$$
\boldsymbol{H}^{(I+1)}=\sigma^{\otimes_{\kappa}}\left(\hat{\boldsymbol{A}} \boxtimes_{\kappa}\left(\boldsymbol{H}^{(I)} \otimes_{\kappa} \boldsymbol{W}^{(I)}\right)\right)
$$

where $\sigma^{\otimes_{\kappa}}$ is the κ-stereographic version of σ (see paper)

- Learn the curvature to adapt to the geometry of the data

Our Contributions: 4) Constant Curvature GCN

- Turn it non-euclidean:

$$
\boldsymbol{H}^{(I+1)}=\sigma^{\otimes_{\kappa}}\left(\hat{\boldsymbol{A}} \boxtimes_{\kappa}\left(\boldsymbol{H}^{(I)} \otimes_{\kappa} \boldsymbol{W}^{(I)}\right)\right)
$$

where $\sigma^{\otimes \kappa}$ is the κ-stereographic version of σ (see paper)

- Learn the curvature to adapt to the geometry of the data
- Allows for differentiable transitions in the geometry during training

Our Contributions: 5) Product GCN

Our Contributions: 5) Product GCN

- We can take it one step further: Embed in product space

$$
\mathfrak{s t}_{\kappa_{1}}^{d} \times \cdots \times \mathfrak{s t}_{\kappa_{m}}^{d}
$$

Our Contributions: 5) Product GCN

- We can take it one step further: Embed in product space

$$
\mathfrak{s t}_{\kappa_{1}}^{d} \times \cdots \times \mathfrak{s t}_{\kappa_{m}}^{d}
$$

Our Contributions: 5) Product GCN

- We can take it one step further: Embed in product space

$$
\mathfrak{s t}_{\kappa_{1}}^{d} \times \cdots \times \mathfrak{s t}_{\kappa_{m}}^{d}
$$

- Again we find a gyrovector space structure

Our Contributions: 5) Product GCN

- We can take it one step further: Embed in product space

$$
\mathfrak{s t}_{\kappa_{1}}^{d} \times \cdots \times \mathfrak{s t}_{\kappa_{m}}^{d}
$$

- Again we find a gyrovector space structure
- The operations extend component-wise while still preserving the desired properties

Experiments: Distortion Task

Experiments: Distortion Task

- Minimize the discrepancy between embedding distances and graph distances

$$
L\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n^{2}} \sum_{i, j}\left(\left(\frac{d_{\kappa}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)}{d_{\boldsymbol{G}(i, j)}}\right)^{2}-1\right)^{2}
$$

Experiments: Distortion Task

- Minimize the discrepancy between embedding distances and graph distances

$$
L\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n^{2}} \sum_{i, j}\left(\left(\frac{d_{\kappa}\left(\boldsymbol{x}_{i}, x_{j}\right)}{d_{G(i, j)}}\right)^{2}-1\right)^{2}
$$

- Train κ-GCN on three syntethic datasets, tree (negative curvature), spherical graph (positive curvature) and toroidal graph (product of positive curvature)

Experiments: Distortion Task

- Minimize the discrepancy between embedding distances and graph distances

$$
L\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n^{2}} \sum_{i, j}\left(\left(\frac{d_{\kappa}\left(\boldsymbol{x}_{i}, x_{j}\right)}{d_{G(i, j)}}\right)^{2}-1\right)^{2}
$$

- Train κ-GCN on three syntethic datasets, tree (negative curvature), spherical graph (positive curvature) and toroidal graph (product of positive curvature)

Model	Tree	Toroidal	Spherical
$\mathbb{E}^{10}(\mathrm{GCN})$	0.0502	0.0603	0.0409
$\mathbb{H}^{10}(\kappa$-GCN $)$	$\mathbf{0 . 0 0 2 9}$	0.272	0.267
$\mathbb{S}^{10}(\kappa$-GCN $)$	0.473	0.0485	$\mathbf{0 . 0 3 3 7}$
$\mathbb{H}^{5} \times \mathbb{H}^{5}(\kappa$-GCN $)$	0.0048	0.112	0.152
$\mathbb{S}^{5} \times \mathbb{S}^{5}(\kappa$-GCN $)$	0.51	$\mathbf{0 . 0 4 6 4}$	0.0359

Experiments: Node Classification

- Evaluate on four real-world datasets

Experiments: Node Classification

- Evaluate on four real-world datasets
- Report mean accuracy across 5 splits and 5 runs each

Experiments: Node Classification

- Evaluate on four real-world datasets
- Report mean accuracy across 5 splits and 5 runs each

Model	Citeseer	Cora	Pubmed	Airport
$\mathbb{E}^{16}[3]$	72.9 ± 0.54	81.4 ± 0.4	79.2 ± 0.39	81.4 ± 0.29
$\mathbb{H}^{16}[1]$	71 ± 0.49	80.3 ± 0.46	$\mathbf{7 9 . 8} \pm \mathbf{0 . 4 3}$	$\mathbf{8 4 . 4} \pm \mathbf{0 . 4 1}$
$\mathbb{H}^{16}(\kappa$-GCN $)$	$\mathbf{7 3 . 2} \pm \mathbf{0 . 5 1}$	81.2 ± 0.5	78.5 ± 0.36	81.9 ± 0.33
$\mathbb{S}^{16}(\kappa$-GCN $)$	72.1 ± 0.45	$\mathbf{8 1 . 9} \pm \mathbf{0 . 4 5}$	78.8 ± 0.49	80.9 ± 0.58
Prod-GCN	71.1 ± 0.59	80.8 ± 0.41	78.1 ± 0.6	81.7 ± 0.44

THANK YOU!

Check out our website hyperbolicdeeplearning.com

HYPERBOLIC DEEP LEARNING

References

[1] Chami, I., Ying, R., Ré, C., and Leskovec, J. (2019). Hyperbolic graph convolutional neural networks. Advances in Neural Information processing systems.
[2] Ganea, O., Bécigneul, G., and Hofmann, T. (2018). Hyperbolic neural networks. In Advances in Neural Information Processing Systems, pages 5345-5355.
[3] Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations.
[4] Nickel, M. and Kiela, D. (2018). Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In International Conference on Machine Learning.

