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• Hn = {x : ||x ||2 ≤ 1√
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• Hn = {x : ||x ||2 ≤ 1√
c
} with curvature −c equipped with

Riemannian tensor g c
x = 4

(1−c||x ||2)2
1

• Projection of hyperboloid

• dc
H (x , y) = 1√

c
cosh−1

(
1 +

2
c
||x−y ||22

( 1
c
−||x ||22)( 1

c
−||y ||22)

)

Heatmap of dκ
H Projection of hyperboloid [4]



Gyrospace Structure

• Next best thing to a vector space

• Vector addition x + y 7→ x ⊕c y

• Scalar multiplication rx 7→ r ⊗c x

• Geodesic γx−→y (t) = x ⊕c (t ⊗c (−x ⊕c y))
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Our Contributions: 1) Unified Formalism

• κ-stereographic model for any κ ∈ R:

stdκ = {x ∈ Rd | −κ‖x‖22 < 1}

Rd stdκ
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1−2κxT y+κ2||x ||2||y ||2

r ⊗κ x rx tanκ (r · tan−1κ ||x ||) x
||x ||

γx→y (t) x + t(y − x) x ⊕κ (t ⊗κ (−x ⊕κ y))

• More unifying expressions for distance, exponential map
etc. in our paper!
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Gyromidpoint for Varying Curvature



Our Contributions: 3) Differentiable Interpolation

• All quantities recover their Euclidean counterpart for κ −→ 0±

• We proved an even stronger result:

Differentiability of stdκ w.r.t. κ around 0

The first order derivatives at 0− and 0+ w.r.t. to κ of all
the mentioned quantities exist and are equal.

• Enables learning the curvature κ with gradient descent with
a differentiable change of sign
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Our Contributions: 4) Constant Curvature GCN

• Given graph G = (V ,A,X ) where V = {1, . . . , n}, adjacency
A ∈ Rn×n and node-level features X ∈ Rn×d

• Graph neural networks are a very popular class of models for
inference on graphs

• We extend the vanilla GCN [3]:

H(t+1) = σ
(
ÂH(t)W (t)

)
for some non-linearity σ, Â = D̃−

1
2 (A + 1) D̃−

1
2 ,

D̃ii =
∑

k Ãik and trainable parameters W (l)
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k Ãik and trainable parameters W (l)



Our Contributions: 4) Constant Curvature GCN

• Given graph G = (V ,A,X ) where V = {1, . . . , n}, adjacency
A ∈ Rn×n and node-level features X ∈ Rn×d

• Graph neural networks are a very popular class of models for
inference on graphs

• We extend the vanilla GCN [3]:

H(t+1) = σ
(
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• Turn it non-euclidean:
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(
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(
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))
where σ⊗κ is the κ-stereographic version of σ (see paper)

• Learn the curvature to adapt to the geometry of the data

• Allows for differentiable transitions in the geometry during
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Â �κ

(
H(l) ⊗κ W (l)

))
where σ⊗κ is the κ-stereographic version of σ (see paper)

• Learn the curvature to adapt to the geometry of the data

• Allows for differentiable transitions in the geometry during
training



Our Contributions: 5) Product GCN

• We can take it one step further: Embed in product space
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Experiments: Distortion Task

• Minimize the discrepancy between embedding distances and
graph distances

L(x1, . . . , xn) =
1

n2

∑
i ,j

((
dκ(xi , xj)
dG(i ,j)

)2

− 1

)2

• Train κ-GCN on three syntethic datasets, tree (negative
curvature), spherical graph (positive curvature) and toroidal
graph (product of positive curvature)

Model Tree Toroidal Spherical

E10 (GCN) 0.0502 0.0603 0.0409
H10 (κ-GCN) 0.0029 0.272 0.267
S10 (κ-GCN) 0.473 0.0485 0.0337
H5 ×H5 (κ-GCN) 0.0048 0.112 0.152
S5 × S5 (κ-GCN) 0.51 0.0464 0.0359
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Experiments: Node Classification

• Evaluate on four real-world datasets

• Report mean accuracy across 5 splits and 5 runs each

Model Citeseer Cora Pubmed Airport

E16 [3] 72.9± 0.54 81.4± 0.4 79.2± 0.39 81.4± 0.29
H16 [1] 71± 0.49 80.3± 0.46 79.8± 0.43 84.4± 0.41
H16 (κ-GCN) 73.2± 0.51 81.2± 0.5 78.5± 0.36 81.9± 0.33
S16 (κ-GCN) 72.1± 0.45 81.9± 0.45 78.8± 0.49 80.9± 0.58
Prod-GCN 71.1± 0.59 80.8± 0.41 78.1± 0.6 81.7± 0.44
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THANK YOU!

Check out our website hyperbolicdeeplearning.com

HYPERBOLIC DEEP LEARNING

http://hyperbolicdeeplearning.com
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