Partial Trace Regression and Low-Rank Kraus Decomposition

Hachem Kadri¹, Stéphane Ayache¹, Riikka Huusari², Alain Rakotomamonjy^{3,4}, Liva Ralaivola⁴

 $^1{\rm Aix\text{-}Marseille}$ University, CNRS, LIS, Marseille, France $^2{\rm Helsinki}$ Institute for Information Technology, Aalto University, Espoo, Finland $^3{\rm Universit\acute{e}}$ Rouen Normandie, LITIS, Rouen, France $^4{\rm Criteo}$ Al Lab, Paris

$$y = \operatorname{tr}\left(B_*^\top X\right) + \epsilon$$

- ullet Generalization of linear regression to **matrix input** X
 - ightarrow Spatio-temporal data, covariance descriptors, ...
- ullet Output y is a real number

$$y = \operatorname{tr}\left(B_*^\top X\right) + \epsilon$$

- ullet Generalization of linear regression to **matrix input** X
 - ightarrow Spatio-temporal data, covariance descriptors, ...
- ullet Output y is a real number

Low-Rank Estimation [Koltchinskii et al., 2011]

$$\widehat{B} = \underset{B}{\operatorname{arg\,min}} \sum_{i=1}^{\ell} \left(y_i - \operatorname{tr}(B^{\top} X_i) \right)^2 + \lambda \|B\|_1$$

$$y = \operatorname{tr}\left(B_*^\top X\right) + \epsilon$$

- ullet Generalization of linear regression to **matrix input** X
 - ightarrow Spatio-temporal data, covariance descriptors, ...
- Output y is a real number

PSD-contrained Estimation [Slawski et al., 2015]

$$\widehat{B} = \arg\min_{B \in \mathbb{S}_p^+} \sum_{i=1}^{\ell} \left(y_i - \operatorname{tr}(B^\top X_i) \right)^2$$

$$y = \operatorname{tr}\left(B_*^\top X\right) + \epsilon$$

- ullet Generalization of linear regression to **matrix input** X
 - → Spatio-temporal data, covariance descriptors, . . .
- Output y is a real number
- Relevant to:
 - → Matrix completion
 - → Phase retrieval
 - \rightarrow Quantum state tomography
 - \rightarrow ...

$$y = \operatorname{tr}\left(B_*^\top X\right) + \epsilon$$

- ullet Generalization of linear regression to **matrix input** X
 - \rightarrow Spatio-temporal data, covariance descriptors, ...
- ullet Output y is a real number
- Relevant to:
 - → Matrix completion

$$\underset{B}{\operatorname{arg\,min}} \|\mathcal{P}_{\Omega}(B^*) - \mathcal{P}_{\Omega}(B)\|^2 \text{ s.t. } \operatorname{rank}(B) = r$$

$$y = \operatorname{tr}\left(B_*^\top X\right) + \epsilon$$

- ullet Generalization of linear regression to **matrix input** X
 - → Spatio-temporal data, covariance descriptors, . . .
- ullet Output y is a real number
- Relevant to:
 - → Matrix completion

$$\arg\min_{B} \sum_{(i,j)\in\Omega} \left(\mathcal{P}_{\Omega}(B^*)_{ij} - \operatorname{tr}(B^{\top} E_{ij}) \right)^2 \text{ s.t. } \operatorname{rank}(B) = r$$

Partial Trace Regression

Generalizes *Trace Regression* to the case when both **inputs** and **outputs** are **matrices**.

Covariance matrix
Figure from [Williamson et al., 2012]

Notational Conventions

 $\mathbb{M}_p := \mathbb{M}_p(\mathbb{R})$ the space of all $p \times p$ real **matrices**

 $\mathbb{M}_p(\mathbb{M}_q)$ the space of $p\times p$ block matrices whose i,j entry is an element of \mathbb{M}_q

 $\mathcal{L}(\mathbb{M}_p,\mathbb{M}_q)$ the space of **linear maps** from \mathbb{M}_p to \mathbb{M}_q

From Trace to Partial Trace

Trace

From Trace to Partial Trace

• Trace of a block matrix

From Trace to Partial Trace

Partial-trace

The partial trace operation applied to $m \times m$ -blocks of a $qm \times qm$ matrix gives a $q \times q$ matrix as an output.

Partial Trace Regression

$$Y = \operatorname{tr}_m \left(A_* X B_*^{\top} \right) + \epsilon$$

- ullet Matrix Input $X\in\mathbb{M}_p$ and Matrix Output $Y\in\mathbb{M}_q$
- ullet $A_*,B_*\in \mathbb{M}_{qm imes p}$ are the **unknown parameters** of the model
- \bullet We recover the $trace\ regression$ model when q=1

Learning the Model Parameters

Our solution: Kraus representation of completely positive maps

Positive and Completely Positive Maps [Bhatia, 2009]

Positive maps

 $\Phi\in\mathcal{L}(\mathbb{M}_p,\mathbb{M}_q)$ is **positive** if for all $M\in\mathbb{S}_p^+$, $\Phi(M)\in\mathbb{S}_q^+$

Positive and Completely Positive Maps [Bhatia, 2009]

m-Positive maps

 $\Phi \in \mathcal{L}(\mathbb{M}_p, \mathbb{M}_q)$ is **m-positive** if $\Phi_m : \mathbb{M}_m(\mathbb{M}_p) \to \mathbb{M}_m(\mathbb{M}_q)$ defined as

$$\Phi_m \begin{bmatrix} A_{11} & A_{12} & \dots \\ \vdots & \ddots & \\ A_{m1} & & A_{mm} \end{bmatrix} := \begin{bmatrix} \Phi(A_{11}) & \Phi(A_{12}) & \dots \\ \vdots & \ddots & \\ \Phi(A_{m1}) & & \Phi(A_{mm}) \end{bmatrix}$$

is positive.

Positive and Completely Positive Maps [Bhatia, 2009]

Completely positive maps

 Φ is completely positive if it is m-positive for any $m\geq 1$

A Positive But Not Completely Positive Map

Example: the transpose map

• Define $\Phi: \mathbb{M}_2 \to \mathbb{M}_2$ by $\Phi(A) = A^{\top}$. Then $\Phi_1 \geq 0$ but $\Phi_2 \ngeq 0$.

$$\Phi_2\left(\left[\begin{array}{c|cc|c} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right]\right) = \left[\begin{array}{c|cc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

A Completely Positive Map

Example

• Let $V \in \mathbb{M}_{q \times p}$. Define $\Phi : \mathbb{M}_p \to \mathbb{M}_q$ by $\Phi(A) = VAV^{\top}$. Then Φ is **completely positive**.

$$\Phi_{2}\left(\left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array}\right]\right) = \left[\begin{array}{c|c} VA_{11}V^{\top} & VA_{12}V^{\top} \\ \hline VA_{21}V^{\top} & VA_{22}V^{\top} \end{array}\right]$$
$$= (I_{2} \otimes V) \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array}\right] (I_{2} \otimes V^{\top})$$

Stinespring Representation

Stinespring's Theorem 1955

Let $\Phi \in \mathcal{L}(\mathbb{M}_p, \mathbb{M}_q)$. Φ writes as $\Phi(X) = \operatorname{tr}_m \left(AXA^\top \right)$ for some $A \in \mathbb{M}_{qm \times p}$ if and only if Φ is **completely positive**.

- ullet Partial trace regression \leftrightarrow Learning a completely positive map
- Partial trace version of the PSD-contrained trace regression
- Efficient optimization via Kraus decomposition

Kraus Representation

Choi's Theorem 1975, Kraus Decomposition 1971

Let $\Phi \in \mathcal{L}(\mathbb{M}_p, \mathbb{M}_q)$ be a completely positive linear map. Then there exist $A_j \in \mathbb{M}_{q \times p}$, $1 \leq j \leq r$, with $r \leq pq$ such that

$$\forall X \in \mathbb{M}_p, \quad \Phi(X) = \sum_{j=1}^r A_j X A_j^{\top}.$$

- ullet Learning a completely positive map \leftrightarrow Finding a Kraus decomposition
- ullet Small values of r correspond to ${oldsymbol{low-rank}}$ Kraus representation

Back to Partial Trace Regression

Low-Rank Kraus Estimation

$$\underset{A_j \in \mathbb{M}_{q \times p}}{\operatorname{arg\,min}} \sum_{i=1}^{l} \ell(Y_i, \sum_{j=1}^{r} A_j X_i A_j^{\top})$$

Back to Partial Trace Regression

Generalization Bound

 $\mathcal{F} = \{\Phi: \mathbb{M}_p \to \mathbb{M}_q: \Phi \text{ is completely positive and} \\ \text{its Kraus rank is equal to } r\}$

Under some assumptions on ℓ , for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $h\in\mathcal{F}$,

$$R(h) \le \hat{R}(h) + \gamma \sqrt{\frac{pqr \log(\frac{8epq}{r})\log(\frac{l}{pqr})}{l}} + \gamma \sqrt{\frac{\log(\frac{1}{\delta})}{2l}}$$

Back to Matrix Completion

(Block) PSD Matrix Completion

Let $\Phi: \mathbb{M}_p \to \mathbb{M}_q$ be a linear mapping. Then the following conditions are equivalent:

- $oldsymbol{\Phi}$ is completely positive.
- ② The **block matrix** $\mathbf{M} \in \mathbb{M}_p(\mathbb{M}_q)$ defined by

$$\mathbf{M}_{ij} = \Phi(E_{ij}), \ 1 \le i, j \le p,$$

is **positive**, where E_{ij} are the matrix units of \mathbb{M}_p .

Experiments

• (PSD) Matrix-to-Matrix Regression

• (Block) PSD Matrix Completion

(PSD) Matrix-to-Matrix Regression

• Simulated data: 10000 samples, $20 \times 20 \rightarrow 10 \times 10$

Model	MSE
Multivariate Regression	0.058 ± 0.0134
Reduced-Rank Regression	0.245 ± 0.1023
HOPLS	1.602 ± 0.0011
Tucker-NN	0.595 ± 0.0252
TensorTrain-NN	0.001 ± 0.0009
Trace Regression	0.028 ± 0.0144
Partial Trace Regression	0.001 ± 0.0008

(PSD) Matrix-to-Matrix Regression

• Simulated data: 100 samples, $20 \times 20 \rightarrow 10 \times 10$

Model	MSE	Param.
TensorTrain-NN	0.662 ± 0.364	4,000
Partial Trace Regression	0.007 ± 0.013	1,000

→ Partial Trace Regression preserves PSD structure

(PSD) Matrix-to-Matrix Regression

 Real BCI data: Mapping covariance matrices for domain adaptation

Subject	NoAdapt	FullAdapt	OoSAdapt
1	73.66	73.66	72.24
3	65.93	72.89	68.86
7	53.42	64.62	59.20
8	73.80	75.27	73.06
9	73.10	75.00	76.89

• Simulated data: Missing blocks, $28 \times 28 \ (p=7, q=4)$

• Simulated data: Missing blocks, $28 \times 28 \ (p=7, q=4)$

Model	MSE
TensorTrain-NN	3.942 ± 1.463
Trace Regression	2.996 ± 1.078
Partial Trace Regression	0.572 ± 0.019

• Simulated data: Missing entries, 28×28 (p = 7, q = 4)

• Simulated data: Missing entries, $28 \times 28 \ (p=7,q=4)$

 Multiple features digits dataset: Kernel matrix completion in a multi-view setting

100 80 accuracy (%) 60 PTR d.1 p,q: 20, 10 PTR d.1 p,q: 10, 20 Trace regression PTR d.2 p.a: 20, 10 ---- PTR d.2 p,q: 10, 20 ---- Trace regression d.2 20 50 60 70 80 90 10 missing data (%)

depth-1 Vs depth-2

Conclusion

- New model Partial trace regression
- Novel concepts in ML Completely postive maps and low-rank Kraus decomposition
- Theoretically well founded
- Promising performance

A bridge between Machine Learning and Quantum Computing