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Introduction
Let H be a Euclidean space (e.g., Rn or Rm×n) and consider

min f (x)
s.t. x ∈ C

where
• f : H → R is a smooth convex function
• C ⊂ H is a compact convex set, C = conv(V)

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yia>i x))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ
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Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈ ]1,∞[ \{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?
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The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.
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The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth convex function, and let x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C.
If γt = 2

t+2 (default) or γt = min
{
〈∇f (xt ),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?
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The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory
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Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW
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Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using V to maintain the projection-free property
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Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt ),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt ] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]
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Boosting Frank-Wolfe

Why [xt , xt + gt ] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ V

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt ] ⊆ C by convexity
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Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ H, K ∈ N\{0}, δ ∈ ]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈V〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k )− align(∇, dk ) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)
• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)
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Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈ ]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?
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Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt ),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωtp where p ∈ ]0, 1]. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωtp
)

• The assumption Nt > ωtp simply states that Nt is nonnegligeable, i.e.,
that the boosting procedure is active

• Else BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1 and p = 1)
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Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

( xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi a>i x))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j )

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”
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Computational experiments
• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset
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Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈V
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
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Takeaways and final remarks

• Projection-free algorithms are of considerable interest in optimization

• We have proposed an intuitive and generic boosting procedure to speed up
Frank-Wolfe algorithms

• Although our method may perform more linear minimizations per iteration,
the progress obtained greatly overcomes their cost

• We focused on smooth convex objective functions, but we expect our
method to provide significant gains in performance in other areas of
optimization as well
E.g., large-scale finite-sum/stochastic constrained optimization:

gt ← procedure(xt ,−∇̃f (xt),K , δ)
xt+1 ← xt + γtgt
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