
Boosting Frank-Wolfe by Chasing Gradients

Cyrille W. Combettes
.

with Sebastian Pokutta

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA, USA

37th International Conference on Machine Learning
July 12–18, 2020

Outline

1 Introduction

2 The Frank-Wolfe algorithm

3 Boosting Frank-Wolfe

4 Computational experiments

2/19

Introduction
Let H be a Euclidean space (e.g., Rn or Rm×n) and consider

min f (x)
s.t. x ∈ C

where
• f : H → R is a smooth convex function
• C ⊂ H is a compact convex set, C = conv(V)

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yia>i x))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

3/19

Introduction
Let H be a Euclidean space (e.g., Rn or Rm×n) and consider

min f (x)
s.t. x ∈ C

where
• f : H → R is a smooth convex function
• C ⊂ H is a compact convex set, C = conv(V)

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yia>i x))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

3/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

xt

xt − γt∇f (xt)

xt+1

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive

• This is an issue with the method of projections, not necessarily with the
geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nnz) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

4/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C

• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections

• FW = pick a vertex (using gradient information) and move in that
direction

• Successfully applied to: traffic assignment, computer vision, optimal
transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction

• Successfully applied to: traffic assignment, computer vision, optimal
transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/19

The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth convex function, and let x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C.
If γt = 2

t+2 (default) or γt = min
{
〈∇f (xt),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?

6/19

The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth convex function, and let x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C.
If γt = 2

t+2 (default) or γt = min
{
〈∇f (xt),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?

6/19

The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth convex function, and let x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C.
If γt = 2

t+2 (default) or γt = min
{
〈∇f (xt),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?

6/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)

• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/19

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

7/19

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/19

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/19

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/19

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/19

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using V to maintain the projection-free property

9/19

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using V to maintain the projection-free property

9/19

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)

• Build this direction by using V to maintain the projection-free property

9/19

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using V to maintain the projection-free property

9/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt

and satisfies [xt , xt + gt] ⊆ C so we can update
xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈V〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈V〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈V〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/19

Boosting Frank-Wolfe

Why [xt , xt + gt] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ V

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt] ⊆ C by convexity

11/19

Boosting Frank-Wolfe

Why [xt , xt + gt] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ V

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt] ⊆ C by convexity

11/19

Boosting Frank-Wolfe

Why [xt , xt + gt] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ V

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt] ⊆ C by convexity

11/19

Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ H, K ∈ N\{0}, δ ∈]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈V〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k)− align(∇, dk) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)
• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)

12/19

Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ H, K ∈ N\{0}, δ ∈]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈V〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k)− align(∇, dk) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)

• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)

12/19

Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ H, K ∈ N\{0}, δ ∈]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈V〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k)− align(∇, dk) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)
• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)

12/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?

• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?

• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/19

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωtp where p ∈]0, 1]. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωtp
)

• The assumption Nt > ωtp simply states that Nt is nonnegligeable, i.e.,
that the boosting procedure is active

• Else BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1 and p = 1)

14/19

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωtp where p ∈]0, 1]. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωtp
)

• The assumption Nt > ωtp simply states that Nt is nonnegligeable, i.e.,
that the boosting procedure is active

• Else BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1 and p = 1)

14/19

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωtp where p ∈]0, 1]. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωtp
)

• The assumption Nt > ωtp simply states that Nt is nonnegligeable, i.e.,
that the boosting procedure is active

• Else BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1 and p = 1)

14/19

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem
Let C ⊂ H be a compact convex set with diameter D and f : H → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈V〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωtp where p ∈]0, 1]. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωtp
)

• The assumption Nt > ωtp simply states that Nt is nonnegligeable, i.e.,
that the boosting procedure is active

• Else BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1 and p = 1)

14/19

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi a>i x))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”

15/19

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi a>i x))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”

15/19

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi a>i x))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”

15/19

Computational experiments
• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset

16/19

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈V
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt

17/19

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈V
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
17/19

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈V
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
17/19

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈V
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
17/19

Takeaways and final remarks

• Projection-free algorithms are of considerable interest in optimization

• We have proposed an intuitive and generic boosting procedure to speed up
Frank-Wolfe algorithms

• Although our method may perform more linear minimizations per iteration,
the progress obtained greatly overcomes their cost

• We focused on smooth convex objective functions, but we expect our
method to provide significant gains in performance in other areas of
optimization as well
E.g., large-scale finite-sum/stochastic constrained optimization:

gt ← procedure(xt ,−∇̃f (xt),K , δ)
xt+1 ← xt + γtgt

18/19

Takeaways and final remarks

• Projection-free algorithms are of considerable interest in optimization
• We have proposed an intuitive and generic boosting procedure to speed up

Frank-Wolfe algorithms

• Although our method may perform more linear minimizations per iteration,
the progress obtained greatly overcomes their cost

• We focused on smooth convex objective functions, but we expect our
method to provide significant gains in performance in other areas of
optimization as well
E.g., large-scale finite-sum/stochastic constrained optimization:

gt ← procedure(xt ,−∇̃f (xt),K , δ)
xt+1 ← xt + γtgt

18/19

Takeaways and final remarks

• Projection-free algorithms are of considerable interest in optimization
• We have proposed an intuitive and generic boosting procedure to speed up

Frank-Wolfe algorithms
• Although our method may perform more linear minimizations per iteration,

the progress obtained greatly overcomes their cost

• We focused on smooth convex objective functions, but we expect our
method to provide significant gains in performance in other areas of
optimization as well
E.g., large-scale finite-sum/stochastic constrained optimization:

gt ← procedure(xt ,−∇̃f (xt),K , δ)
xt+1 ← xt + γtgt

18/19

Takeaways and final remarks

• Projection-free algorithms are of considerable interest in optimization
• We have proposed an intuitive and generic boosting procedure to speed up

Frank-Wolfe algorithms
• Although our method may perform more linear minimizations per iteration,

the progress obtained greatly overcomes their cost
• We focused on smooth convex objective functions, but we expect our

method to provide significant gains in performance in other areas of
optimization as well

E.g., large-scale finite-sum/stochastic constrained optimization:

gt ← procedure(xt ,−∇̃f (xt),K , δ)
xt+1 ← xt + γtgt

18/19

Takeaways and final remarks

• Projection-free algorithms are of considerable interest in optimization
• We have proposed an intuitive and generic boosting procedure to speed up

Frank-Wolfe algorithms
• Although our method may perform more linear minimizations per iteration,

the progress obtained greatly overcomes their cost
• We focused on smooth convex objective functions, but we expect our

method to provide significant gains in performance in other areas of
optimization as well
E.g., large-scale finite-sum/stochastic constrained optimization:

gt ← procedure(xt ,−∇̃f (xt),K , δ)
xt+1 ← xt + γtgt

18/19

References
G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning

of conditional gradients. ICML, 2019.
M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe

algorithm. SIAM J. Control, 1968.
C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956.
D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent con-

ditional gradient algorithm for structured polytopes. NIPS, 2016.
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization

variants. NIPS, 2015.
G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.

Technical report, University of Florida, 2013.
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math.

Phys., 1966.
F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained

optimization with convergence guarantees. NIPS, 2017.
P. Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming.

North-Holland, 1970.

19/19

	Introduction
	The Frank-Wolfe algorithm
	Boosting Frank-Wolfe
	Computational experiments

