Boosting Frank-Wolfe by Chasing Gradients

Cyrille W. Combettes

with Sebastian Pokutta

School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA, USA

37th International Conference on Machine Learning July 12–18, 2020

- **2** The Frank-Wolfe algorithm
- **3** Boosting Frank-Wolfe
- **4** Computational experiments

Let \mathcal{H} be a Euclidean space (e.g., \mathbb{R}^n or $\mathbb{R}^{m \times n}$) and consider min f(x)s.t. $x \in C$

where

- $f: \mathcal{H} \to \mathbb{R}$ is a smooth convex function
- $\mathcal{C} \subset \mathcal{H}$ is a compact convex set, $\mathcal{C} = \mathsf{conv}(\mathcal{V})$

Let $\mathcal H$ be a Euclidean space (e.g., $\mathbb R^n$ or $\mathbb R^{m\times n})$ and consider

min f(x)s.t. $x \in C$

where

- $f: \mathcal{H} \to \mathbb{R}$ is a smooth convex function
- $\mathcal{C} \subset \mathcal{H}$ is a compact convex set, $\mathcal{C} = \operatorname{conv}(\mathcal{V})$

Example

• Sparse logistic regression

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-y_i a_i^\top x))$$

s.t. $\|x\|_1 \leqslant \tau$

• Low-rank matrix completion

$$\min_{\substack{X \in \mathbb{R}^{m \times n}}} \frac{1}{2|\mathcal{I}|} \sum_{(i,j) \in \mathcal{I}} (Y_{i,j} - X_{i,j})^2$$
s.t. $\|X\|_{\mathsf{nuc}} \leqslant \tau$

• A natural approach is to use any efficient method and add projections back onto C to ensure feasibility

• A natural approach is to use any efficient method and add projections back onto C to ensure feasibility

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

- A natural approach is to use any efficient method and add projections back onto ${\cal C}$ to ensure feasibility
- However, in many situations projections onto ${\mathcal C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} -ball, $p \in]1,\infty[\setminus\{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nnz)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto ${\cal C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_p -ball, $p \in]1,\infty[\setminus\{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nnz)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_p -ball, $p \in]1, \infty[\setminus \{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nnz)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n\ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} -ball, $p \in]1,\infty[\setminus\{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nnz)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto ${\cal C}$ to ensure feasibility
- However, in many situations projections onto ${\mathcal C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_p -ball, $p \in]1,\infty[\setminus\{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nnz)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

N/A: no closed-form exists and solution must be computed via nontrivial optimization

• Can we avoid projections?

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \operatorname*{arg\,min}_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \operatorname*{arg\,min}_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min(\nabla f(x_t), v)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in V} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

• x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in V} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

- x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$
- FW uses linear minimizations (the "FW oracle") instead of projections

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in V} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

- x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$
- FW uses linear minimizations (the "FW oracle") instead of projections
- FW = pick a vertex (using gradient information) and move in that direction

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW) **Input:** $x_0 \in C$, $\gamma_t \in [0, 1]$. 1: for t = 0 to T - 1 do 2: $v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v \rangle$ $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

- x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$
- FW uses linear minimizations (the "FW oracle") instead of projections
- FW = pick a vertex (using gradient information) and move in that direction
- Successfully applied to: traffic assignment, computer vision, optimal transport, adversarial learning, etc.

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a L-smooth convex function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. If $\gamma_t = \frac{2}{t+2}$ (default) or $\gamma_t = \min\left\{\frac{\langle \nabla f(x_t), x_t - v_t \rangle}{L \|x_t - v_t\|^2}, 1\right\}$ ("short step"), then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{4LD^2}{t+2}$$

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a *L*-smooth convex function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. If $\gamma_t = \frac{2}{t+2}$ (default) or $\gamma_t = \min\left\{\frac{\langle \nabla f(x_t), x_t - v_t \rangle}{L \|x_t - v_t\|^2}, 1\right\}$ ("short step"), then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{4LD^2}{t+2}$$

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi, 2013; Lan, 2013)

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a *L*-smooth convex function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. If $\gamma_t = \frac{2}{t+2}$ (default) or $\gamma_t = \min \left\{ \frac{\langle \nabla f(x_t), x_t - v_t \rangle}{L \|x_t - v_t\|^2}, 1 \right\}$ ("short step"), then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{4LD^2}{t+2}$$

- The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi, 2013; Lan, 2013)
- Why?

Consider the simple problem

$$\min \frac{1}{2} \|x\|_2^2$$
 s.t. $x \in \operatorname{conv}\left(\begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$

and
$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Consider the simple problem

$$\begin{split} &\min \frac{1}{2} \|x\|_2^2 \\ &\text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \end{split}$$

and $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\begin{array}{l} \min \frac{1}{2} \|x\|_2^2 \\ \text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \\ \text{and } x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{array}$

x₁

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\min \frac{1}{2} \|x\|_{2}^{2}$ s.t. $x \in \operatorname{conv}\left(\begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$

and $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\begin{array}{l} \min \frac{1}{2} \|x\|_2^2 \\ \text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \\ \text{and } x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{array}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\min \frac{1}{2} \|x\|_2^2$ s.t. $x \in \operatorname{conv}\left(\begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$ and $x^* = \begin{pmatrix}0\\0\end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
The Frank-Wolfe algorithm

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• FW tries to reach x* by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

 $\begin{array}{l} \min \, \frac{1}{2} \|x\|_2^2 \\ \text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \end{array}$

and $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- FW tries to reach x* by moving towards vertices
- This yields an inefficient zig-zagging trajectory

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

 Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber & Meshi, 2016): memory-free variant of AFW

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

- Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber & Meshi, 2016): memory-free variant of AFW
- Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW and FW

• Can we speed up FW in a simple way?

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea:

• Speed up FW by moving in a direction better aligned with $-\nabla f(x_t)$

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea:

- Speed up FW by moving in a direction better aligned with $-\nabla f(x_t)$
- Build this direction by using ${\mathcal V}$ to maintain the projection-free property

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

 How can we build a direction better aligned with −∇f(x_t) and that allows to update x_{t+1} without projection?

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

• $v_1 \in \arg \max_{v \in \mathcal{V}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{V}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈V} ⟨r₂, v⟩

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{V}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈V} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{V}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈V} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$
- $g_t = d/(\lambda_0 + \lambda_1)$

 How can we build a direction better aligned with −∇f(x_t) and that allows to update x_{t+1} without projection?

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{V}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈V} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$
- $g_t = d/(\lambda_0 + \lambda_1)$

The boosted direction g_t is better aligned with −∇f(x_t) than is the FW direction v₀ − x_t

 How can we build a direction better aligned with −∇f(x_t) and that allows to update x_{t+1} without projection?

•
$$v_0 \in \arg \max_{v \in \mathcal{V}} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{V}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈V} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$
- $g_t = d/(\lambda_0 + \lambda_1)$

The boosted direction g_t is better aligned with -∇f(x_t) than is the FW direction v₀ - x_t and satisfies [x_t, x_t + g_t] ⊆ C so we can update

$$x_{t+1} = x_t + \gamma_t g_t$$
 for any $\gamma_t \in [0,1]$

Why $[x_t, x_t + g_t] \subseteq C$? Let K_t be the number of alignment rounds. We have

$$d = \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t) \quad \text{where } \lambda_k > 0 \text{ and } v_k \in \mathcal{V}$$

Why $[x_t, x_t + g_t] \subseteq \mathcal{C}$? Let K_t be the number of alignment rounds. We have

$$d = \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t)$$
 where $\lambda_k > 0$ and $v_k \in \mathcal{V}$

so if $\Lambda_t = \sum_{k=0}^{K-1} \lambda_k$, then

$$g_t = \frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t) = \underbrace{\left(\frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k v_k\right)}_{\in \mathcal{C}} - x_t$$

Why $[x_t, x_t + g_t] \subseteq C$? Let K_t be the number of alignment rounds. We have

$$d = \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t)$$
 where $\lambda_k > 0$ and $v_k \in \mathcal{V}$

so if $\Lambda_t = \sum_{k=0}^{K-1} \lambda_k$, then

$$g_t = \frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t) = \underbrace{\left(\frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k v_k\right)}_{\in \mathcal{C}} - x_t$$

Thus, $x_t + g_t \in \mathcal{C}$ so $[x_t, x_t + g_t] \subseteq \mathcal{C}$ by convexity

Algorithm Finding a direction *g* well aligned with ∇ from a reference point *z*

Inpu	ut: $z \in \mathcal{C}$, $ abla \in \mathcal{H}$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.	
1:	$d_0 \leftarrow 0, \ \Lambda \leftarrow 0$	
2:	for $k = 0$ to $K - 1$ do	
3:	$r_k \leftarrow abla - d_k$	⊳ <i>k</i> -th residual
4:	$v_k \leftarrow {\sf argmax}_{v \in \mathcal{V}} \langle r_k, v angle$	▷ FW oracle
5:	$u_k \leftarrow rg\max_{u \in \{v_k - z, -d_k / \ d_k\ \}} \langle r_k, u \rangle$	
6:	$\lambda_k \leftarrow \langle r_k, u_k \rangle / \ u_k\ ^2$	
7:	$d'_k \leftarrow d_k + \lambda_k u_k$	
8:	if $align(abla, d'_k) - align(abla, d_k) \geqslant \delta$ then	
9:	$d_{k+1} \leftarrow d_k'$	
10:	$egin{aligned} & \Lambda_t \leftarrow egin{cases} \Lambda + \lambda_k & ext{if } u_k = v_k - z \ & \Lambda(1 - \lambda_k / \ d_k\) & ext{if } u_k = -d_k / \ d_k\ \end{aligned}$	
11:	else	
12:	break	⊳ exit <i>k</i> -loop
13:	$g \leftarrow d_k / \Lambda$	▷ normalization

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Inpı	it: $z \in C$, $\nabla \in H$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0$,	L[.
1:	$d_0 \leftarrow 0, \ \Lambda \leftarrow 0$	
2:	for $k = 0$ to $K - 1$ do	
3:	$r_k \leftarrow abla - d_k$	▷ k-th residual
4:	$m{v}_k \leftarrow {\sf argmax}_{m{v} \in \mathcal{V}} \langle m{r}_k,m{v} angle$	▷ FW oracle
5:	$u_k \leftarrow \operatorname{argmax}_{u \in \{v_k - z, -d_k / \ d_k\ \}} \langle r_k, u_k \rangle$	ı>
6:	$\lambda_k \leftarrow \langle r_k, u_k \rangle / \ u_k\ ^2$	
7:	$d_k' \leftarrow d_k + \lambda_k u_k$	
8:	$if \; align(\nabla, d_k') - align(\nabla, d_k) \geqslant \delta \; t$	hen
9:	$d_{k+1} \leftarrow d_k'$	
10:	$\int \Lambda + \lambda_k$ if $u_k =$	$v_k - z$
	$\Lambda_t \leftarrow \left\{ \Lambda(1 - \lambda_k / \ d_k\) \text{ if } u_k = \right\}$	$= -d_k/\ d_k\ $
11:	else	
12:	break	⊳ exit <i>k</i> -loop
13:	$g \leftarrow d_k / \Lambda$	▷ normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Inpu	it: $z \in \mathcal{C}$, $\nabla \in \mathcal{H}$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.	
1:	$d_0 \leftarrow 0, \Lambda \leftarrow 0$	
2:	for $k = 0$ to $K - 1$ do	
3:	$r_k \leftarrow abla - d_k$	⊳ <i>k</i> -th residual
4:	$v_k \leftarrow {\sf argmax}_{v \in \mathcal{V}} \langle r_k, v angle$	▷ FW oracle
5:	$u_k \leftarrow rg\max_{u \in \{v_k - z, -d_k / \ d_k\ \}} \langle r_k, u angle$	
6:	$\lambda_k \leftarrow \langle \mathbf{r}_k, \mathbf{u}_k \rangle / \ \mathbf{u}_k\ ^2$	
7:	$d_k' \leftarrow d_k + \lambda_k u_k$	
8:	if $align(abla, d'_k) - align(abla, d_k) \geqslant \delta$ then	
9:	$d_{k+1} \leftarrow d_k'$	
10.	$\int \Lambda + \lambda_k \qquad \text{if } u_k = v_k - z$	
10:	$\Lambda_t \leftarrow \left\{ \Lambda(1 - \lambda_k / \ d_k\) \text{if } u_k = -d_k / \ d_k\ \right\}$	
11:	else	
12:	break	⊳ exit <i>k</i> -loop
13:	$g \leftarrow d_k / \Lambda$	normalization

- Technicality to ensure convergence of the procedure (Locatello et al., 2017)
- The stopping criterion is an alignment improvement condition (typically $\delta=10^{-3}$ and $K=+\infty)$

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1:for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min(\nabla f(x_t), v)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1: for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$

3:
$$x_{t+1} \leftarrow x_t + \gamma_t g_t$$

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

Algorithm Boosted Frank-Wolfe (BoostFW)

Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.

- 1: for t = 0 to T 1 do
- 2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$
- 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

Algorithm Boosted Frank-Wolfe (BoostFW)

Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.

1: for
$$t = 0$$
 to $T - 1$ do

2:
$$g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$$

3:
$$x_{t+1} \leftarrow x_t + \gamma_t g_t$$

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1: for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1: for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

 $x^* = x_1$

What is the convergence rate of BoostFW?

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1:for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

 $x^* = x_1$

- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1:for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?
- How does it compare to the state-of-the-art?

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min\left\{\frac{\langle -\nabla f(x_t), g_t \rangle}{L \|g_t\|^2}, 1\right\}$ ("short step") and suppose that $N_t \ge \omega t^p$ where $p \in]0, 1]$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t^p\right)$$

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min\left\{\frac{\langle -\nabla f(x_t), g_t \rangle}{L \|g_t\|^2}, 1\right\}$ ("short step") and suppose that $N_t \ge \omega t^p$ where $p \in [0, 1]$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t^p\right)$$

• The assumption $N_t \ge \omega t^p$ simply states that N_t is nonnegligeable, i.e., that the boosting procedure is active

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min\left\{\frac{\langle -\nabla f(x_t), g_t \rangle}{L \|g_t\|^2}, 1\right\}$ ("short step") and suppose that $N_t \ge \omega t^p$ where $p \in [0, 1]$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t^p\right)$$

- The assumption $N_t \ge \omega t^{\rho}$ simply states that N_t is nonnegligeable, i.e., that the boosting procedure is active
- Else BoostFW reduces to FW and the convergence rate is $\frac{4LD^2}{t+2}$
Boosting Frank-Wolfe

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem

Let $C \subset \mathcal{H}$ be a compact convex set with diameter D and $f : \mathcal{H} \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in \mathcal{V}} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min\left\{\frac{\langle -\nabla f(x_t), g_t \rangle}{L \|g_t\|^2}, 1\right\}$ ("short step") and suppose that $N_t \ge \omega t^p$ where $p \in [0, 1]$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t^p\right)$$

- The assumption $N_t \ge \omega t^{\rho}$ simply states that N_t is nonnegligeable, i.e., that the boosting procedure is active
- Else BoostFW reduces to FW and the convergence rate is $\frac{4LD^2}{t+2}$
- In practice, $N_t pprox t$ (so $\omega \lesssim 1$ and p=1)

 We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

 We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$\begin{split} \min_{\substack{x \in \mathbb{R}^n \\ \textbf{s.t. } \|x\|_1 \leqslant \tau}} & \sum_{a \in \mathcal{A}} \tau_a x_a \left(1 + 0.03 \left(\frac{x_a}{c_a} \right)^4 \right) \\ \text{s.t. } \|x\|_1 \leqslant \tau & \text{s.t. } \|x\|_1 \leqslant \tau \\ & \sum_{\substack{r \in \mathcal{R}_{i,j}}} y_r = d_{i,j} \quad (i,j) \in \mathcal{S} \\ & y_r \geqslant 0 \quad r \in \mathcal{R}_{i,j}, \ (i,j) \in \mathcal{S} \end{split}$$

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-y_i a_i^\top x))$$
s.t. $||x||_1 \leq \tau$

$$\begin{split} \min_{X \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{I}|} \sum_{(i,j) \in \mathcal{I}} h_{\rho}(Y_{i,j} - X_{i,j}) \\ \text{s.t. } \|X\|_{\text{nuc}} \leqslant \tau \end{split}$$

 We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$\begin{split} \min_{x \in \mathbb{R}^{|\mathcal{A}|}} & \sum_{a \in \mathcal{A}} \tau_a x_a \left(1 + 0.03 \left(\frac{x_a}{c_a} \right)^4 \right) \\ \min_{x \in \mathbb{R}^n} \|y - Ax\|_2^2 & \text{s.t. } x_a = \sum_{r \in \mathcal{R}} \mathbb{1}_{\{a \in r\}} y_r \quad a \in \mathcal{A} \\ & \sum_{r \in \mathcal{R}_{i,j}} y_r = d_{i,j} \quad (i,j) \in \mathcal{S} \\ & y_r \geqslant 0 \qquad r \in \mathcal{R}_{i,j}, (i,j) \in \mathcal{S} \end{split}$$

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-y_i a_i^\top x))$$

$$\min_{x \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{I}|} \sum_{(i,j) \in \mathcal{I}} h_{\rho}(Y_{i,j} - X_{i,j})$$

$$\text{s.t. } \|x\|_1 \leq \tau$$

$$\text{s.t. } \|X\|_{\text{nuc}} \leq \tau$$

• For BoostFW and AFW we also run the line search-free variants (the "short step" strategy) and label them with an "L"

• Traffic assignment

- Sparse logistic regression on the Gisette dataset
- Collaborative filtering on the MovieLens 100k dataset

40

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

• (details)

DICG

$$egin{aligned} & a_t \leftarrow ext{away vertex} \ & v_t \leftarrow rgmin_{v \in \mathcal{V}} \langle
abla f(x_t), v
angle \ & x_{t+1} \leftarrow x_t + \gamma_t (v_t - a_t) \end{aligned}$$

BoostDICG

 $a_t \leftarrow \text{away vertex}$ $g_t \leftarrow \text{procedure}(a_t, -\nabla f(x_t), K, \delta)$ $x_{t+1} \leftarrow x_t + \gamma_t g_t$

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

• (details)

DICG

$$a_t \leftarrow \text{away vertex}$$

$$v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v \rangle$$

$$x_{t+1} \leftarrow x_t + \gamma_t (v_t - a_t)$$

BoostDICG

 $a_t \leftarrow \text{away vertex}$ $g_t \leftarrow \text{procedure}(a_t, -\nabla f(x_t), K, \delta)$ $x_{t+1} \leftarrow x_t + \gamma_t g_t$

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

• (details)

DICG

$$a_t \leftarrow \text{away vertex}$$

$$v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v \rangle$$

$$x_{t+1} \leftarrow x_t + \gamma_t (v_t - a_t)$$

BoostDICG

 $a_t \leftarrow \text{away vertex}$ $g_t \leftarrow \text{procedure}(a_t, -\nabla f(x_t), K, \delta)$ $x_{t+1} \leftarrow x_t + \gamma_t g_t$

• Projection-free algorithms are of considerable interest in optimization

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms
- Although our method may perform more linear minimizations per iteration, the progress obtained greatly overcomes their cost

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms
- Although our method may perform more linear minimizations per iteration, the progress obtained greatly overcomes their cost
- We focused on smooth convex objective functions, but we expect our method to provide significant gains in performance in other areas of optimization as well

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms
- Although our method may perform more linear minimizations per iteration, the progress obtained greatly overcomes their cost
- We focused on smooth convex objective functions, but we expect our method to provide significant gains in performance in other areas of optimization as well
 - E.g., large-scale finite-sum/stochastic constrained optimization:

$$g_t \leftarrow \text{procedure}(x_t, -\tilde{\nabla}f(x_t), K, \delta)$$
$$x_{t+1} \leftarrow x_t + \gamma_t g_t$$

References

- G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of conditional gradients. *ICML*, 2019.
- M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM J. Control, 1968.

C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020.

- M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956.
- D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. *NIPS*, 2016.
- M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
- S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. *NIPS*, 2015.
- G. Lan. The complexity of large-scale convex programming under a linear optimization oracle. Technical report, University of Florida, 2013.
- E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math. Phys., 1966.
- F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained optimization with convergence guarantees. *NIPS*, 2017.
- P. Wolfe. Convergence theory in nonlinear programming. *Integer and Nonlinear Programming*. North-Holland, 1970.