# Boosting Frank-Wolfe by Chasing Gradients 

## Cyrille W. Combettes

with Sebastian Pokutta

School of Industrial and Systems Engineering Georgia Institute of Technology

Atlanta, GA, USA
$37^{\text {th }}$ International Conference on Machine Learning July 12-18, 2020

ICML
International Conference
On Machine Learning

## Georgia <br> Tech

## Outline

(1) Introduction
(2) The Frank-Wolfe algorithm
(3) Boosting Frank-Wolfe
(4) Computational experiments

## Introduction

Let $\mathcal{H}$ be a Euclidean space (e.g., $\mathbb{R}^{n}$ or $\mathbb{R}^{m \times n}$ ) and consider

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

where

- $f: \mathcal{H} \rightarrow \mathbb{R}$ is a smooth convex function
- $\mathcal{C} \subset \mathcal{H}$ is a compact convex set, $\mathcal{C}=\operatorname{conv}(\mathcal{V})$


## Introduction

Let $\mathcal{H}$ be a Euclidean space (e.g., $\mathbb{R}^{n}$ or $\mathbb{R}^{m \times n}$ ) and consider

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

where

- $f: \mathcal{H} \rightarrow \mathbb{R}$ is a smooth convex function
- $\mathcal{C} \subset \mathcal{H}$ is a compact convex set, $\mathcal{C}=\operatorname{conv}(\mathcal{V})$


## Example

- Sparse logistic regression

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i} a_{i}^{\top} x\right)\right) \\
& \text { s.t. }\|x\|_{1} \leqslant \tau
\end{aligned}
$$

- Low-rank matrix completion

$$
\begin{aligned}
& \min _{X \in \mathbb{R}^{m \times n}} \frac{1}{2|\mathcal{I}|} \sum_{(i, j) \in \mathcal{I}}\left(Y_{i, j}-X_{i, j}\right)^{2} \\
& \text { s.t. }\|X\|_{\text {nuc }} \leqslant \tau
\end{aligned}
$$

## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility


## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility

$$
x_{t}-\gamma_{t} \nabla f\left(x_{t}\right)
$$



## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive


## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of $\mathcal{C}$ : linear minimizations over $\mathcal{C}$ can still be relatively cheap


## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of $\mathcal{C}$ : linear minimizations over $\mathcal{C}$ can still be relatively cheap

| Feasible region $\mathcal{C}$ | Linear minimization | Projection |
| :--- | :--- | :--- |
| $\ell_{1} / \ell_{2} / \ell_{\infty}$-ball | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ |
| $\ell_{p}$-ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$ | $\mathcal{O}(n)$ | $\mathrm{N} / \mathrm{A}$ |
| Nuclear norm-ball | $\mathcal{O}(n n z)$ | $\mathcal{O}(m n \min \{m, n\})$ |
| Flow polytope | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{3.5}\right)$ |
| Birkhoff polytope | $\mathcal{O}\left(n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ |
| Matroid polytope | $\mathcal{O}(n \ln (n))$ | $\mathcal{O}($ poly $(n))$ |

N/A: no closed-form exists and solution must be computed via nontrivial optimization

## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of $\mathcal{C}$ : linear minimizations over $\mathcal{C}$ can still be relatively cheap

| Feasible region $\mathcal{C}$ | Linear minimization | Projection |
| :--- | :--- | :--- |
| $\ell_{1} / \ell_{2} / \ell_{\infty}$-ball | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ |
| $\ell_{p}$ ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$ | $\mathcal{O}(n)$ | $\mathrm{N} / \mathrm{A}$ |
| Nuclear norm-ball | $\mathcal{O}(\mathrm{nnz})$ | $\mathcal{O}(m n \min \{m, n\})$ |
| Flow polytope | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{3.5}\right)$ |
| Birkhoff polytope | $\mathcal{O}\left(n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ |
| Matroid polytope | $\mathcal{O}(n \ln (n))$ | $\mathcal{O}($ poly $(n))$ |

N/A: no closed-form exists and solution must be computed via nontrivial optimization

## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of $\mathcal{C}$ : linear minimizations over $\mathcal{C}$ can still be relatively cheap

| Feasible region $\mathcal{C}$ | Linear minimization | Projection |
| :--- | :--- | :--- |
| $\ell_{1} / \ell_{2} / \ell_{\infty}$-ball | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ |
| $\ell_{p}$-ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$ | $\mathcal{O}(n)$ | $\mathrm{N} / \mathrm{A}$ |
| Nuclear norm-ball | $\mathcal{O}(\mathrm{nnz})$ | $\mathcal{O}(m n \min \{m, n\})$ |
| Flow polytope | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{3.5}\right)$ |
| Birkhoff polytope | $\mathcal{O}\left(n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ |
| Matroid polytope | $\mathcal{O}(n \ln (n))$ | $\mathcal{O}($ poly $(n))$ |

N/A: no closed-form exists and solution must be computed via nontrivial optimization

## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of $\mathcal{C}$ : linear minimizations over $\mathcal{C}$ can still be relatively cheap

| Feasible region $\mathcal{C}$ | Linear minimization | Projection |
| :--- | :--- | :--- |
| $\ell_{1} / \ell_{2} / \ell_{\infty}$-ball | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ |
| $\ell_{p}$-ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$ | $\mathcal{O}(n)$ | $\mathrm{N} / \mathrm{A}$ |
| Nuclear norm-ball | $\mathcal{O}(n n z)$ | $\mathcal{O}(m n \min \{m, n\})$ |
| Flow polytope | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{3.5}\right)$ |
| Birkhoff polytope | $\mathcal{O}\left(n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ |
| Matroid polytope | $\mathcal{O}(n \ln (n))$ | $\mathcal{O}($ poly $(n))$ |

N/A: no closed-form exists and solution must be computed via nontrivial optimization

## Introduction

- A natural approach is to use any efficient method and add projections back onto $\mathcal{C}$ to ensure feasibility
- However, in many situations projections onto $\mathcal{C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of $\mathcal{C}$ : linear minimizations over $\mathcal{C}$ can still be relatively cheap

| Feasible region $\mathcal{C}$ | Linear minimization | Projection |
| :--- | :--- | :--- |
| $\ell_{1} / \ell_{2} / \ell_{\infty}$-ball | $\mathcal{O}(n)$ | $\mathcal{O}(n)$ |
| $\ell_{p}$ ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$ | $\mathcal{O}(n)$ | $\mathrm{N} / \mathrm{A}$ |
| Nuclear norm-ball | $\mathcal{O}(\mathrm{nnz})$ | $\mathcal{O}(m n \min \{m, n\})$ |
| Flow polytope | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{3.5}\right)$ |
| Birkhoff polytope | $\mathcal{O}\left(n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ |
| Matroid polytope | $\mathcal{O}(n \ln (n))$ | $\mathcal{O}($ poly $(n))$ |

N/A: no closed-form exists and solution must be computed via nontrivial optimization

- Can we avoid projections?


## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

| Algorithm | Frank-Wolfe (FW) |
| :--- | :--- |
| Input: | $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| 1: | for $t=0$ to $T-1$ do |
| 2: | $v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: | $x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$ |



## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

| Algorithm $\quad$ Frank-Wolfe (FW) |
| :--- |
| Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| 1: for $t=0$ to $T-1$ do |
| 2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$ |



## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$ $v \in \mathcal{V}$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$


## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

| Algorithm $\quad$ Frank-Wolfe (FW) |
| :--- |
| Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| 1: for $t=0$ to $T-1$ do |
| 2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$ |



## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

| Algorithm $\quad$ Frank-Wolfe (FW) |
| :--- |
| Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| 1: for $t=0$ to $T-1$ do |
| 2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$ |



## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

| Algorithm | Frank-Wolfe (FW) |
| :--- | :--- |
| Input: | $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| 1: | for $t=0$ to $T-1$ do |
| 2: | $v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: | $x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$ |



## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$ $v \in \mathcal{V}$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$


- $x_{t+1}$ is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$


## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$


- $x_{t+1}$ is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$
- FW uses linear minimizations (the "FW oracle") instead of projections


## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$


- $x_{t+1}$ is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$
- FW uses linear minimizations (the "FW oracle") instead of projections
- $\mathrm{FW}=$ pick a vertex (using gradient information) and move in that direction


## The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$


- $x_{t+1}$ is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$
- FW uses linear minimizations (the "FW oracle") instead of projections
- $\mathrm{FW}=$ pick a vertex (using gradient information) and move in that direction
- Successfully applied to: traffic assignment, computer vision, optimal transport, adversarial learning, etc.


## The Frank-Wolfe algorithm

## Theorem (Levitin \& Polyak, 1966; Jaggi, 2013)

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a $L$-smooth convex function, and let $x_{0} \in \arg \min _{v \in \mathcal{L}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. If $\gamma_{t}=\frac{2}{t+2}\left(\right.$ default) or $\gamma_{t}=\min \left\{\frac{\left\langle\nabla f\left(x_{t}\right), x_{t}-v_{t}\right\rangle}{L\left\|x_{t}-v_{t}\right\|^{2}}, 1\right\}$ ("short step"), then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{4 L D^{2}}{t+2}
$$

## The Frank-Wolfe algorithm

## Theorem (Levitin \& Polyak, 1966; Jaggi, 2013)

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a $L$-smooth convex function, and let $x_{0} \in \arg \min _{v \in \mathcal{L}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. If $\gamma_{t}=\frac{2}{t+2}\left(\right.$ default) or $\gamma_{t}=\min \left\{\frac{\left\langle\nabla f\left(x_{t}\right), x_{t}-v_{t}\right\rangle}{L\left\|x_{t}-v_{t}\right\|^{2}}, 1\right\}$ ("short step"), then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{4 L D^{2}}{t+2}
$$

- The convergence rate cannot be improved (Canon \& Cullum, 1968; Jaggi, 2013; Lan, 2013)


## The Frank-Wolfe algorithm

## Theorem (Levitin \& Polyak, 1966; Jaggi, 2013)

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a $L$-smooth convex function, and let $x_{0} \in \arg \min _{v \in \mathcal{L}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. If $\gamma_{t}=\frac{2}{t+2}\left(\right.$ default) or $\gamma_{t}=\min \left\{\frac{\left\langle\nabla f\left(x_{t}\right), x_{t}-v_{t}\right\rangle}{L\left\|x_{t}-v_{t}\right\|^{2}}, 1\right\}$ ("short step"), then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{4 L D^{2}}{t+2}
$$

- The convergence rate cannot be improved (Canon \& Cullum, 1968; Jaggi, 2013; Lan, 2013)
- Why?


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices


## The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach $x^{*}$ by moving towards vertices
- This yields an inefficient zig-zagging trajectory


## Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices


## Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices



## Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices

- Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber \& Meshi, 2016): memory-free variant of AFW


## Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices

- Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber \& Meshi, 2016): memory-free variant of AFW
- Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW and FW


## Boosting Frank-Wolfe

- Can we speed up FW in a simple way?


## Boosting Frank-Wolfe

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction


## Boosting Frank-Wolfe

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea:

- Speed up FW by moving in a direction better aligned with $-\nabla f\left(x_{t}\right)$


## Boosting Frank-Wolfe

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea:

- Speed up FW by moving in a direction better aligned with $-\nabla f\left(x_{t}\right)$
- Build this direction by using $\mathcal{V}$ to maintain the projection-free property


## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?


## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{2}, v\right\rangle$



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$
- $g_{t}=d /\left(\lambda_{0}+\lambda_{1}\right)$



## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$

- $g_{t}=d /\left(\lambda_{0}+\lambda_{1}\right)$
- The boosted direction $g_{t}$ is better aligned with $-\nabla f\left(x_{t}\right)$ than is the FW direction $v_{0}-x_{t}$


## Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update $x_{t+1}$ without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{V}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{V}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$
- $g_{t}=d /\left(\lambda_{0}+\lambda_{1}\right)$

- The boosted direction $g_{t}$ is better aligned with $-\nabla f\left(x_{t}\right)$ than is the FW direction $v_{0}-x_{t}$ and satisfies $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ so we can update

$$
x_{t+1}=x_{t}+\gamma_{t} g_{t} \quad \text { for any } \gamma_{t} \in[0,1]
$$

## Boosting Frank-Wolfe

Why $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ ? Let $K_{t}$ be the number of alignment rounds. We have

$$
d=\sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right) \quad \text { where } \lambda_{k}>0 \text { and } v_{k} \in \mathcal{V}
$$

## Boosting Frank-Wolfe

Why $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ ? Let $K_{t}$ be the number of alignment rounds. We have

$$
d=\sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right) \quad \text { where } \lambda_{k}>0 \text { and } v_{k} \in \mathcal{V}
$$

so if $\Lambda_{t}=\sum_{k=0}^{K-1} \lambda_{k}$, then

$$
g_{t}=\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right)=\underbrace{\left(\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k} v_{k}\right)}_{\in \mathcal{C}}-x_{t}
$$

## Boosting Frank-Wolfe

Why $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ ? Let $K_{t}$ be the number of alignment rounds. We have

$$
d=\sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right) \quad \text { where } \lambda_{k}>0 \text { and } v_{k} \in \mathcal{V}
$$

so if $\Lambda_{t}=\sum_{k=0}^{K-1} \lambda_{k}$, then

$$
g_{t}=\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right)=\underbrace{\left(\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k} v_{k}\right)}_{\in \mathcal{C}}-x_{t}
$$

Thus, $x_{t}+g_{t} \in \mathcal{C}$ so $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ by convexity

## Boosting Frank-Wolfe

Algorithm Finding a direction $g$ well aligned with $\nabla$ from a reference point $z$

| Input: | $z \in \mathcal{C}, \nabla \in \mathcal{H}, K \in \mathbb{N} \backslash\{0\}, \delta \in] 0,1[$. |  |
| :--- | :--- | :--- |
| 1: | $d_{0} \leftarrow 0, \Lambda \leftarrow 0$ |  |
| 2: | for $k=0$ to $K-1$ do |  |
| 3: | $r_{k} \leftarrow \nabla-d_{k}$ |  |
| 4: | $v_{k} \leftarrow \arg \max _{v \in \mathcal{V}}\left\langle r_{k}, v\right\rangle$ |  |
| 5: | $u_{k} \leftarrow \arg \max _{u \in\left\{v_{k}-z,-d_{k} /\left\\|d_{k}\right\\|\right\}}\left\langle r_{k}, u\right\rangle$ |  |
| 6: | $\lambda_{k} \leftarrow\left\langle r_{k}, u_{k}\right\rangle /\left\\|u_{k}\right\\|^{2}$ |  |
| 7: | $d_{k}^{\prime} \leftarrow d_{k}+\lambda_{k} u_{k}$ |  |
| 8: | if $\operatorname{align}\left(\nabla, d_{k}^{\prime}\right)-\operatorname{align}\left(\nabla, d_{k}\right) \geqslant \delta$ thenal |  |
| 9: | $d_{k+1} \leftarrow d_{k}^{\prime}$ |  |
| 10: | $\Lambda_{t} \leftarrow \begin{cases}\Lambda+\lambda_{k} & \text { if } u_{k}=v_{k}-z \\ \Lambda\left(1-\lambda_{k} /\left\\|d_{k}\right\\|\right) & \text { if } u_{k}=-d_{k} /\left\\|d_{k}\right\\|\end{cases}$ |  |
| 11: else |  |  |
| 12: | break |  |
| 13: | $\leftarrow \leftarrow d_{k} / \Lambda$ | $\triangleright$ exit $k$-loop |

## Boosting Frank-Wolfe

Algorithm Finding a direction $g$ well aligned with $\nabla$ from a reference point $z$

| Input: | $z \in \mathcal{C}, \nabla \in \mathcal{H}, K \in \mathbb{N} \backslash\{0\}, \delta \in] 0,1[$. |  |
| :--- | :--- | :--- |
| 1: | $d_{0} \leftarrow 0, \Lambda \leftarrow 0$ |  |
| 2: | for $k=0$ to $K-1$ do |  |
| 3: | $r_{k} \leftarrow \nabla-d_{k}$ |  |
| 4: | $v_{k} \leftarrow \arg \max _{v \in \mathcal{V}}\left\langle r_{k}, v\right\rangle$ |  |
| 5: | $u_{k} \leftarrow \arg \max _{u \in\left\{v_{k}-z,-d_{k} /\left\\|d_{k}\right\\|\right\}}\left\langle r_{k}, u\right\rangle$ |  |
| 6: | $\lambda_{k} \leftarrow\left\langle r_{k}, u_{k}\right\rangle /\left\\|u_{k}\right\\|^{2}$ |  |
| 7: | $d_{k}^{\prime} \leftarrow d_{k}+\lambda_{k} u_{k}$ |  |
| 8: | if $\operatorname{align}\left(\nabla, d_{k}^{\prime}\right)-\operatorname{align}\left(\nabla, d_{k}\right) \geqslant \delta$ thenal |  |
| 9: | $d_{k+1} \leftarrow d_{k}^{\prime}$ |  |
| 10: | $\Lambda_{t} \leftarrow\left\{\begin{array}{l}\Lambda+\lambda_{k} \\ \Lambda\left(1-\lambda_{k} /\left\\|d_{k}\right\\|\right) \\ \text { 11: }\end{array}\right.$ | if $u_{k}=-d_{k} /\left\\|d_{k}\right\\|$ |
| else |  |  |
| 12: | break |  |
| 13: | $\leftarrow \leftarrow d_{k} / \Lambda$ | $\triangleright$ exit $k$-loop |

- Technicality to ensure convergence of the procedure (Locatello et al., 2017)


## Boosting Frank-Wolfe

Algorithm Finding a direction $g$ well aligned with $\nabla$ from a reference point $z$

| Input: | $z \in \mathcal{C}, \nabla \in \mathcal{H}, K \in \mathbb{N} \backslash\{0\}, \delta \in] 0,1[$. |  |
| :--- | :--- | :--- |
| 1: | $d_{0} \leftarrow 0, \Lambda \leftarrow 0$ |  |
| 2: | for $k=0$ to $K-1$ do |  |
| 3: | $r_{k} \leftarrow \nabla-d_{k}$ |  |
| 4: | $v_{k} \leftarrow \arg \max _{v \in \mathcal{V}}\left\langle r_{k}, v\right\rangle$ |  |
| 5: | $u_{k} \leftarrow \arg \max _{u \in\left\{v_{k}-z,-d_{k} /\left\\|d_{k}\right\\|\right\}}\left\langle r_{k}, u\right\rangle$ |  |
| 6: | $\lambda_{k} \leftarrow\left\langle r_{k}, u_{k}\right\rangle /\left\\|u_{k}\right\\|^{2}$ |  |
| 7: | $d_{k}^{\prime} \leftarrow d_{k}+\lambda_{k} u_{k}$ |  |
| 8: | if $\operatorname{align}\left(\nabla, d_{k}^{\prime}\right)-\operatorname{align}\left(\nabla, d_{k}\right) \geqslant \delta$ thenal |  |
| 9: | $d_{k+1} \leftarrow d_{k}^{\prime}$ |  |
| 10: | $\Lambda_{t} \leftarrow \begin{cases}\Lambda+\lambda_{k} & \text { if } u_{k}=v_{k}-z \\ \Lambda\left(1-\lambda_{k} /\left\\|d_{k}\right\\|\right) & \text { if } u_{k}=-d_{k} /\left\\|d_{k}\right\\|\end{cases}$ |  |
| 11: else |  |  |
| 12: | break |  |
| 13: | $\leftarrow \leftarrow d_{k} / \Lambda$ | $\triangleright$ exit $k$-loop |

- Technicality to ensure convergence of the procedure (Locatello et al., 2017)
- The stopping criterion is an alignment improvement condition (typically $\delta=10^{-3}$ and $\left.K=+\infty\right)$


## Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)

| Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| :--- |
| 1: |
| for $t=0$ to $T-1$ do |
| 2: |
| $v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: |$x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.

1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

## Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)

| Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| :--- |
| 1: for $t=0$ to $T-1$ do |
| 2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: |$x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.

1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

## Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)

| Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$. |
| :--- |
| 1: |
| for $t=0$ to $T-1$ do |
| 2: |
| $v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$ |
| 3: |$x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.

1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

## Boosting Frank-Wolfe

## Algorithm Frank-Wolfe (FW)

Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$



Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow$ procedure $\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$


## Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$



Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$


- What is the convergence rate of BoostFW?


## Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$



Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$


- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?


## Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$



Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$


- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?
- How does it compare to the state-of-the-art?


## Boosting Frank-Wolfe

- Let $N_{t}$ be the number of iterations up to $t$ where at least 2 rounds of alignment were performed (FW = always 1 round)


## Theorem

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a L-smooth, convex, and $\mu$-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{V}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t^{p}$ where $\left.\left.p \in\right] 0,1\right]$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t^{p}\right)
$$

## Boosting Frank-Wolfe

- Let $N_{t}$ be the number of iterations up to $t$ where at least 2 rounds of alignment were performed (FW = always 1 round)


## Theorem

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a L-smooth, convex, and $\mu$-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{V}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t^{p}$ where $\left.\left.p \in\right] 0,1\right]$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t^{p}\right)
$$

- The assumption $N_{t} \geqslant \omega t^{p}$ simply states that $N_{t}$ is nonnegligeable, i.e., that the boosting procedure is active


## Boosting Frank-Wolfe

- Let $N_{t}$ be the number of iterations up to $t$ where at least 2 rounds of alignment were performed (FW = always 1 round)


## Theorem

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a L-smooth, convex, and $\mu$-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{V}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t^{p}$ where $\left.\left.p \in\right] 0,1\right]$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t^{p}\right)
$$

- The assumption $N_{t} \geqslant \omega t^{p}$ simply states that $N_{t}$ is nonnegligeable, i.e., that the boosting procedure is active
- Else BoostFW reduces to FW and the convergence rate is $\frac{4 L D^{2}}{t+2}$


## Boosting Frank-Wolfe

- Let $N_{t}$ be the number of iterations up to $t$ where at least 2 rounds of alignment were performed (FW = always 1 round)


## Theorem

Let $\mathcal{C} \subset \mathcal{H}$ be a compact convex set with diameter $D$ and $f: \mathcal{H} \rightarrow \mathbb{R}$ be a L-smooth, convex, and $\mu$-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{V}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t^{p}$ where $\left.\left.p \in\right] 0,1\right]$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t^{p}\right)
$$

- The assumption $N_{t} \geqslant \omega t^{p}$ simply states that $N_{t}$ is nonnegligeable, i.e., that the boosting procedure is active
- Else BoostFW reduces to FW and the convergence rate is $\frac{4 L D^{2}}{t+2}$
- In practice, $N_{t} \approx t$ (so $\omega \lesssim 1$ and $p=1$ )


## Computational experiments

- We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions


## Computational experiments

- We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{|\mathcal{A}|}} \sum_{a \in \mathcal{A}} \tau_{a} x_{a}\left(1+0.03\left(\frac{x_{a}}{c_{a}}\right)^{4}\right) \\
\min _{x \in \mathbb{R}^{n}}\|y-A x\|_{2}^{2} \\
\text { s.t. }\|x\|_{1} \leqslant \tau & \text { s.t. } x_{a}=\sum_{r \in \mathcal{R}} \mathbb{1}_{\{a \in r\}} y_{r} \quad a \in \mathcal{A} \\
\sum_{r \in \mathcal{R}_{i, j}} y_{r}=d_{i, j} \quad(i, j) \in \mathcal{S} \\
y_{r} \geqslant 0 \quad r \in \mathcal{R}_{i, j},(i, j) \in \mathcal{S} \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i} a_{i}^{\top} x\right)\right) & \min ^{x \in \mathbb{R}^{m \times n}} \begin{array}{l}
\frac{1}{|\mathcal{I}|} \sum_{(i, j) \in \mathcal{I}} h_{\rho}\left(Y_{i, j}-X_{i, j}\right) \\
\text { s.t. }\|x\|_{1} \leqslant \tau
\end{array} \quad \text { s.t. }\|X\|_{\text {nuc }} \leqslant \tau
\end{array}
$$

## Computational experiments

- We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$
\begin{aligned}
& \min _{x \in \mathbb{R}|\mathcal{A}|} \sum_{a \in \mathcal{A}} \tau_{a} x_{a}\left(1+0.03\left(\frac{x_{a}}{c_{a}}\right)^{4}\right) \\
& \text { s.t. } x_{a}=\sum_{r \in \mathcal{R}} \mathbb{1}_{\{a \in r\}} y_{r} \quad a \in \mathcal{A} \\
& \sum_{r \in \mathcal{R}_{i, j}} y_{r}=d_{i, j} \quad(i, j) \in \mathcal{S} \\
& y_{r} \geqslant 0 \quad r \in \mathcal{R}_{i, j},(i, j) \in \mathcal{S} \\
& \min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i} a_{i}^{\top} x\right)\right) \\
& \min _{X \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{I}|} \sum_{(i, j) \in \mathcal{I}} h_{\rho}\left(Y_{i, j}-X_{i, j}\right) \\
& \text { s.t. }\|x\|_{1} \leqslant \tau \\
& \text { s.t. }\|X\|_{\text {nuc }} \leqslant \tau
\end{aligned}
$$

- For BoostFW and AFW we also run the line search-free variants (the "short step" strategy) and label them with an "L"


## Computational experiments

- Sparse signal recovery
- Traffic assignment


- Sparse logistic regression on the Gisette dataset



- Collaborative filtering on the MovieLens 100k dataset



## Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG




## Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG


- (details)

$$
\begin{aligned}
& \text { DICG } \\
& a_{t} \leftarrow \operatorname{away} \text { vertex } \\
& v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-a_{t}\right)
\end{aligned}
$$

## BoostDICG

$a_{t} \leftarrow$ away vertex
$g_{t} \leftarrow$ procedure $\left(a_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
$x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

## Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG


- (details)

$$
\begin{aligned}
& \text { DICG } \\
& a_{t} \leftarrow \operatorname{away} \text { vertex } \\
& v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-a_{t}\right)
\end{aligned}
$$

## BoostDICG

$a_{t} \leftarrow$ away vertex
$g_{t} \leftarrow$ procedure $\left(a_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
$x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

## Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG


- (details)

$$
\begin{aligned}
& \text { DICG } \\
& a_{t} \leftarrow \operatorname{away} \text { vertex } \\
& v_{t} \leftarrow \underset{v \in \mathcal{V}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-a_{t}\right)
\end{aligned}
$$

## BoostDICG

$a_{t} \leftarrow$ away vertex
$g_{t} \leftarrow$ procedure $\left(a_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
$x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

## Takeaways and final remarks

- Projection-free algorithms are of considerable interest in optimization


## Takeaways and final remarks

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms


## Takeaways and final remarks

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms
- Although our method may perform more linear minimizations per iteration, the progress obtained greatly overcomes their cost


## Takeaways and final remarks

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms
- Although our method may perform more linear minimizations per iteration, the progress obtained greatly overcomes their cost
- We focused on smooth convex objective functions, but we expect our method to provide significant gains in performance in other areas of optimization as well


## Takeaways and final remarks

- Projection-free algorithms are of considerable interest in optimization
- We have proposed an intuitive and generic boosting procedure to speed up Frank-Wolfe algorithms
- Although our method may perform more linear minimizations per iteration, the progress obtained greatly overcomes their cost
- We focused on smooth convex objective functions, but we expect our method to provide significant gains in performance in other areas of optimization as well
E.g., large-scale finite-sum/stochastic constrained optimization:

$$
\begin{aligned}
& g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\tilde{\nabla} f\left(x_{t}\right), K, \delta\right) \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}
\end{aligned}
$$

## References

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of conditional gradients. ICML, 2019.
M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM J. Control, 1968.
C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956.
D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. NIPS, 2016.
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. NIPS, 2015.
G. Lan. The complexity of large-scale convex programming under a linear optimization oracle. Technical report, University of Florida, 2013.
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math. Phys., 1966.
F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained optimization with convergence guarantees. NIPS, 2017.
P. Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming. North-Holland, 1970.

