Simultaneous Inference for Massive Data: Distributed Bootstrap

Yang Yu¹, Shih-Kang Chao², Guang Cheng¹

¹Purdue University

²University of Missouri

ICML 2020

We have N i.i.d. data points: Z_1, \ldots, Z_N

Estimation:

Fit a model that has an unknown parameter $\theta \in \mathbb{R}^d$ by minimizing the empirical risk

$$\widehat{\theta} := \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(\theta; Z_i)$$

We have N i.i.d. data points: Z_1, \ldots, Z_N

Estimation:

Fit a model that has an unknown parameter $\theta \in \mathbb{R}^d$ by minimizing the empirical risk

$$\widehat{\theta} := \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(\theta; Z_i)$$

Ideally, we want $\widehat{\theta}$ to be close to the expected risk minimizer

$$\theta^* := \arg\min_{\theta \in \mathbb{R}^d} \mathbb{E}_Z[\mathcal{L}(\theta; Z)]$$

We have N i.i.d. data points: Z_1, \ldots, Z_N

Estimation:

Fit a model that has an unknown parameter $\theta \in \mathbb{R}^d$ by minimizing the empirical risk

$$\widehat{\theta} := \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(\theta; Z_i)$$

Ideally, we want $\widehat{\theta}$ to be close to the expected risk minimizer

$$\theta^* := \arg\min_{\theta \in \mathbb{R}^d} \mathbb{E}_Z[\mathcal{L}(\theta; Z)]$$

Examples:

▶ Linear regression: Z = (X, Y), $\mathcal{L}(\theta; Z) = (Y - X^{\top}\theta)^2/2$

► Logistic regression: Z = (X, Y), $\mathcal{L}(\theta; Z) = -YX^{\top}\theta + \log(1 + \exp[X^{\top}\theta])$

 $P(\theta_1^* \in [L,U]) \approx 95\%$

 $P(\theta_1^* \in [L,U]) \approx 95\%$

Simultaneous Inference: Find intervals $[L_1, U_1], \ldots, [L_d, U_d]$ s.t.

 $P(\theta_1^* \in [L_1, U_1], \dots, \theta_d^* \in [L_d, U_d]) \approx 95\%$

 $P(\theta_1^* \in [L,U]) \approx 95\%$

Simultaneous Inference: Find intervals $[L_1, U_1], \ldots, [L_d, U_d]$ s.t.

$$P(\theta_1^* \in [L_1, U_1], \dots, \theta_d^* \in [L_d, U_d]) \approx 95\%$$

How to perform **Simultaneous** Inference:

$$P(\theta_1^* \in [L, U]) \approx 95\%$$

Simultaneous Inference: Find intervals $[L_1, U_1], \ldots, [L_d, U_d]$ s.t.

$$P(\theta_1^* \in [L_1, U_1], \dots, \theta_d^* \in [L_d, U_d]) \approx 95\%$$

How to perform **Simultaneous** Inference: Step 1: Compute point estimator $\hat{\theta}$

$$P(\theta_1^* \in [L, U]) \approx 95\%$$

Simultaneous Inference: Find intervals $[L_1, U_1], \ldots, [L_d, U_d]$ s.t.

$$P(\theta_1^* \in [L_1, U_1], \dots, \theta_d^* \in [L_d, U_d]) \approx 95\%$$

How to perform **Simultaneous** Inference:

- Step 1: Compute point estimator $\hat{\theta}$
- Step 2: Estimate the 0.95-quantile c(0.95) of $\|\sqrt{N}(\hat{\theta} \theta^*)\|_{\infty}$ (by bootstrap)

$$P(\theta_1^* \in [L, U]) \approx 95\%$$

Simultaneous Inference: Find intervals $[L_1, U_1], \ldots, [L_d, U_d]$ s.t.

$$P(\theta_1^* \in [L_1, U_1], \dots, \theta_d^* \in [L_d, U_d]) \approx 95\%$$

How to perform **Simultaneous** Inference:

- Step 1: Compute point estimator $\hat{\theta}$
- Step 2: Estimate the 0.95-quantile c(0.95) of $\|\sqrt{N}(\hat{\theta} \theta^*)\|_{\infty}$ (by bootstrap)

Step 3: For $l = 1, \ldots, d$,

$$L_l = \widehat{\theta}_l - \frac{\widehat{c}(0.95)}{\sqrt{N}}, \quad U_l = \widehat{\theta}_l + \frac{\widehat{c}(0.95)}{\sqrt{N}}$$

Distributed framework:

Distribute N data points evenly across k machines s.t. each machine stores n = N/k data points

- ▶ 1 master node \mathcal{M}_1
- k-1 worker nodes $\mathcal{M}_2, \mathcal{M}_3, \ldots, \mathcal{M}_k$
- Z_{ij} : the *i*-th data point at machine \mathcal{M}_j

Distributed Simultaneous Inference

¹Kleiner, et al. "A scalable bootstrap for massive data." JRSS-B (2014) ²Sengupta, et al. "A subsampled double bootstrap for massive data." JASA (2016)

Distributed Simultaneous Inference

Step 1: Compute $\hat{\theta}$

► Can be approximated by existing efficient distributed estimation methods

¹Kleiner, et al. "A scalable bootstrap for massive data." JRSS-B (2014)
 ²Sengupta, et al. "A subsampled double bootstrap for massive data." JASA (2016)

Distributed Simultaneous Inference

Step 1: Compute $\hat{\theta}$

► Can be approximated by existing efficient distributed estimation methods

Step 2: Bootstrap c(0.95)

- Traditional bootstrap cannot be efficiently applied in the distributed framework
- ▶ BLB¹ and SDB² are computationally expensive due to repeated resampling and not suitable for large *k*

 ¹Kleiner, et al. "A scalable bootstrap for massive data." JRSS-B (2014)
 ²Sengupta, et al. "A subsampled double bootstrap for massive data." JASA (2016)

Question: How can we efficiently do Step 2 in a distributed manner?

Question: How can we efficiently do Step 2 in a distributed manner?

Our contributions:

- We propose communication-efficient and computation-efficient distributed bootstrap methods: k-grad and n+k-1-grad
- We prove a sufficient number of communication rounds that guarantees statistical accuracy and efficiency

Approximate by sample average:

$$\|\sqrt{N}(\widehat{\theta} - \theta^*)\|_{\infty} \approx \left\|\mathbb{E}[\nabla^2 \mathcal{L}(\theta^*; Z)]^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^n \sum_{j=1}^k \nabla \mathcal{L}(\theta^*; Z_{ij})\right\|_{\infty}$$

Approximate by sample average:

$$\|\sqrt{N}(\widehat{\theta} - \theta^*)\|_{\infty} \approx \left\|\mathbb{E}[\nabla^2 \mathcal{L}(\theta^*; Z)]^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^n \sum_{j=1}^k \nabla \mathcal{L}(\theta^*; Z_{ij})\right\|_{\infty}$$

Multiplier bootstrap: $\epsilon_{ij} \overset{\text{iid}}{\sim} \mathcal{N}(0,1)$ for $i=1,\ldots,n$ and $j=1,\ldots,k$

$$\|\sqrt{N}(\widehat{\theta}-\theta^*)\|_{\infty} \stackrel{\mathcal{D}}{\approx} \left\| \mathbb{E}[\nabla^2 \mathcal{L}(\theta^*;Z)]^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^n \sum_{j=1}^k \epsilon_{ij} \nabla \mathcal{L}(\theta^*;Z_{ij}) \right\|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty} \left| \{Z_{ij}\}_{i,j}$$

Approximate by sample average:

$$\|\sqrt{N}(\widehat{\theta} - \theta^*)\|_{\infty} \approx \left\|\mathbb{E}[\nabla^2 \mathcal{L}(\theta^*; Z)]^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^n \sum_{j=1}^k \nabla \mathcal{L}(\theta^*; Z_{ij})\right\|_{\infty}$$

Multiplier bootstrap: $\epsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, k$

$$\|\sqrt{N}(\widehat{\theta}-\theta^*)\|_{\infty} \stackrel{\mathcal{D}}{\approx} \left\| \mathbb{E}[\nabla^2 \mathcal{L}(\theta^*;Z)]^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^n \sum_{j=1}^k \epsilon_{ij} \nabla \mathcal{L}(\theta^*;Z_{ij}) \right\|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty} \right|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty} \left| \{Z_{ij}\}$$

k-grad (computed at \mathcal{M}_1): $\epsilon_j \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$ for $j = 1, \ldots, k$

$$\|\sqrt{N}(\widehat{\theta} - \theta^*)\|_{\infty} \stackrel{\mathcal{D}}{\approx} \overline{W} := \left\| \widetilde{\Theta} \frac{1}{\sqrt{k}} \sum_{j=1}^k \epsilon_j \sqrt{n} (\mathbf{g}_j - \bar{\mathbf{g}}) \right\|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|_{\infty}$$

where $\mathbf{g}_j = \frac{1}{n} \sum_{i=1}^n \nabla \mathcal{L}(\bar{\theta}; Z_{ij})$ computed at \mathcal{M}_j , transmitted to \mathcal{M}_1

$$\bar{\mathbf{g}} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{g}_{j} \text{ averaged at } \mathcal{M}_{1}, \quad \widetilde{\Theta} = \left(\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} \mathcal{L}(\bar{\theta}; Z_{i1})\right)^{-1} \text{ computed at } \mathcal{M}_{1}$$

k-grad fails for small k!

k-grad fails for small k!

Solution: n+k-1-grad (computed at \mathcal{M}_1): $\epsilon_{i1}, \epsilon_j \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ for $i = 1, \dots, n$ and $j = 2, \dots, k$

$$\widetilde{W} := \left\| \widetilde{\Theta} \frac{1}{\sqrt{n+k-1}} \left(\sum_{i=1}^{n} \epsilon_{i1} (\mathbf{g}_{i1} - \bar{\mathbf{g}}) + \sum_{j=2}^{k} \epsilon_{j} \sqrt{n} (\mathbf{g}_{j} - \bar{\mathbf{g}}) \right) \right\|_{\infty} \left| \{Z_{ij}\}_{i,j} \right|$$

where $\mathbf{g}_{i1} = \nabla \mathcal{L}(\bar{\theta}; Z_{i1})$ computed at \mathcal{M}_1

¹Jordan, et al. "Communication-efficient distributed statistical inference." JASA (2019)

Step 1: compute point estimator $\tilde{\theta}$ (τ rounds of communication) 1: $\tilde{\theta}^{(0)} \leftarrow \arg \min_{\theta} \mathcal{L}_1(\theta)$ at \mathcal{M}_1 2: for $t = 1, ..., \tau$ do Transmit $\tilde{\theta}^{(t-1)}$ to $\{\mathcal{M}_i\}_{i=2}^k$ 3: Compute $\nabla \mathcal{L}_1(\widetilde{\theta}^{(t-1)})$ and $\nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1}$ at \mathcal{M}_1 4: for $j = 2, \ldots, k$ do 5: Compute $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_i 6: Transmit $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ to \mathcal{M}_1 7: $\nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)}) \leftarrow k^{-1} \sum_{i=1}^k \nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 8: $\widetilde{\theta}^{(t)} \leftarrow \widetilde{\theta}^{(t-1)} - \nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1} \nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 9:

¹ Jordan, et al. "Communication-efficient distributed statistical inference." JASA (2019)

Step 1: compute point estimator $\tilde{\theta}$ (τ rounds of communication) 1: $\tilde{\theta}^{(0)} \leftarrow \arg \min_{\theta} \mathcal{L}_1(\theta)$ at \mathcal{M}_1 2: for $t = 1, ..., \tau$ do Transmit $\tilde{\theta}^{(t-1)}$ to $\{\mathcal{M}_i\}_{i=2}^k$ 3: Compute $\nabla \mathcal{L}_1(\widetilde{\theta}^{(t-1)})$ and $\nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1}$ at \mathcal{M}_1 4: for j = 2, ..., k do 5 Compute $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_i 6: Transmit $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ to \mathcal{M}_1 7: $\nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)}) \leftarrow k^{-1} \sum_{i=1}^k \nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 8: $\widetilde{\theta}^{(t)} \leftarrow \widetilde{\theta}^{(t-1)} - \nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1} \nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 9: Step 2: bootstrap quantile c(0.95) (0 round of communication)

10: Run k-grad/n+k-1-grad with $\bar{\theta} = \tilde{\theta}^{(t-1)}$ at \mathcal{M}_1

¹Jordan, et al. "Communication-efficient distributed statistical inference." JASA (2019)

Step 1: compute point estimator $\tilde{\theta}$ (τ rounds of communication) 1: $\tilde{\theta}^{(0)} \leftarrow \arg \min_{\theta} \mathcal{L}_1(\theta)$ at \mathcal{M}_1 2: for $t = 1, ..., \tau$ do Transmit $\tilde{\theta}^{(t-1)}$ to $\{\mathcal{M}_i\}_{i=2}^k$ 3: Compute $\nabla \mathcal{L}_1(\widetilde{\theta}^{(t-1)})$ and $\nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1}$ at \mathcal{M}_1 4: for $j = 2, \ldots, k$ do 5 Compute $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_i 6: Transmit $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ to \mathcal{M}_1 7: $\nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)}) \leftarrow k^{-1} \sum_{i=1}^k \nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 8: $\widetilde{\theta}^{(t)} \leftarrow \widetilde{\theta}^{(t-1)} - \nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1} \nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 9: Step 2: bootstrap quantile c(0.95) (0 round of communication) 10: Run k-grad/n+k-1-grad with $\bar{\theta} = \tilde{\theta}^{(t-1)}$ at \mathcal{M}_1 Step 3: 95% simultaneous confidence interval 11: $\tilde{\theta}_{l}^{(t)} \pm N^{-1/2} \tilde{c}(0.95)$ for $l = 1, \dots, d$ In total, τ rounds of communication

¹ Jordan, et al. "Communication-efficient distributed statistical inference." JASA (2019)

Step 1: compute point estimator $\tilde{\theta}$ (τ rounds of communication) 1: $\widetilde{\theta}^{(0)} \leftarrow \arg \min_{\theta} \mathcal{L}_1(\theta)$ at \mathcal{M}_1 2: for $t = 1, ..., \tau$ do Transmit $\tilde{\theta}^{(t-1)}$ to $\{\mathcal{M}_i\}_{i=2}^k$ 3: Compute $\nabla \mathcal{L}_1(\widetilde{\theta}^{(t-1)})$ and $\nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1}$ at \mathcal{M}_1 4: for j = 2, ..., k do 5 Compute $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_i 6: Transmit $\nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ to \mathcal{M}_1 7: $\nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)}) \leftarrow k^{-1} \sum_{i=1}^k \nabla \mathcal{L}_i(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 8: $\widetilde{\theta}^{(t)} \leftarrow \widetilde{\theta}^{(t-1)} - \nabla^2 \mathcal{L}_1(\widetilde{\theta}^{(t-1)})^{-1} \nabla \mathcal{L}_N(\widetilde{\theta}^{(t-1)})$ at \mathcal{M}_1 9: Step 2: bootstrap quantile c(0.95) (0 round of communication) 10: Run k-grad/n+k-1-grad with $\bar{\theta} = \tilde{\theta}^{(t-1)}$ at \mathcal{M}_1 Step 3: 95% simultaneous confidence interval 11: $\tilde{\theta}_{l}^{(t)} \pm N^{-1/2} \tilde{c}(0.95)$ for $l = 1, \dots, d$ In total, τ rounds of communication

Question: How many rounds of communication are sufficient?

¹Jordan, et al. "Communication-efficient distributed statistical inference." JASA (2019)

Assume $n = d^{\gamma_n}$ and $k = d^{\gamma_k}$ for constants $\gamma_n, \gamma_k > 0$

Assume $n = d^{\gamma_n}$ and $k = d^{\gamma_k}$ for constants $\gamma_n, \gamma_k > 0$

Statistical accuracy: $\sup_{\alpha \in (0,1)} |P(\|\sqrt{N}(\tilde{\theta} - \theta^*)\|_{\infty} \le c_W(\alpha)) - \alpha| = o(1)$

Assume $n = d^{\gamma_n}$ and $k = d^{\gamma_k}$ for constants $\gamma_n, \gamma_k > 0$

Statistical accuracy: $\sup_{\alpha \in (0,1)} |P(\|\sqrt{N}(\tilde{\theta} - \theta^*)\|_{\infty} \le c_W(\alpha)) - \alpha| = o(1)$ Statistical efficiency: $\sup_{\alpha \in (0,1)} |P(\|\sqrt{N}(\hat{\theta} - \theta^*)\|_{\infty} \le c_W(\alpha)) - \alpha| = o(1)$

Left: k-grad Right: n+k-1-grad Blue areas: accuracy and efficiency are guaranteed if $\tau \ge \tau_{\min}$ Gray areas: accuracy and efficiency are not guaranteed

Left: k-grad Right: n+k-1-grad Blue areas: accuracy and efficiency are guaranteed if $\tau \ge \tau_{\min}$ Gray areas: accuracy and efficiency are not guaranteed

• $\tau_{\min} \nearrow \text{ logarithmically as } k \nearrow$, $n \searrow$ and $d \nearrow$

Left: k-grad Right: n+k-1-grad Blue areas: accuracy and efficiency are guaranteed if $\tau \ge \tau_{\min}$ Gray areas: accuracy and efficiency are not guaranteed

• $au_{\min} \nearrow$ logarithmically as $k \nearrow$, $n \searrow$ and $d \nearrow$

▶ $\tau_{\min,n+k-1-\text{grad}} \leq \tau_{\min,k-\text{grad}}$

Left: k-grad Right: n+k-1-grad Blue areas: accuracy and efficiency are guaranteed if $\tau \ge \tau_{\min}$ Gray areas: accuracy and efficiency are not guaranteed

• $au_{\min} \nearrow$ logarithmically as $k \nearrow$, $n \searrow$ and $d \nearrow$

- ▶ $\tau_{\min,n+k-1-\text{grad}} \leq \tau_{\min,k-\text{grad}}$
- ▶ $\tau_{\min,n+k-1-\text{grad}} \ge 1$, $\tau_{\min,k-\text{grad}} \ge 2$

Left: k-grad Right: n+k-1-grad Blue areas: accuracy and efficiency are guaranteed if $\tau \ge \tau_{\min}$ Gray areas: accuracy and efficiency are not guaranteed

• $au_{\min} \nearrow$ logarithmically as $k \nearrow$, $n \searrow$ and $d \nearrow$

- $\blacktriangleright \ \tau_{\min, \texttt{n+k-1-grad}} \leq \tau_{\min, \texttt{k-grad}}$
- ▶ γ_k has to be large for k-grad, but not for n+k-1-grad

Illustration of main results for **generalized linear models** Left: k-grad Right: n+k-1-grad

Simulations: logistic regression, $N = 2^{16}$ Top left: k-grad, $d = 2^3$ Top right: k-grad, $d = 2^5$ Bottom left: n+k-1-grad, $d = 2^3$ Bottom right: n+k-1-grad, $d = 2^5$

Comparisons to BLB and SDB:

• Width (logistic regression, left: $d = 2^5$, right: $d = 2^7$)

Comparisons to BLB and SDB:

• Width (logistic regression, left: $d = 2^5$, right: $d = 2^7$)

• Run time in seconds (linear regression, $d = 2^7$)

Methods	$k = 2^2$	$k = 2^6$	$k = 2^{9}$
k-grad	0.82	0.51	0.50
n+k-1-grad	1.49	0.67	0.64
SDB	3.44	3.83	12.66
BLB	981.17	842.50	1950.91

Extensions:

- ► To other models, e.g., graphical models
- ► To high-dimensional sparse models (in progress)

Thank you!