OPTIMIZER BENCHMARKING NEEDS TO ACCOUNT FOR HYPERPARAMETER TUNING

PRABHU TEJA S^{* 1, 2} FLORIAN MAI^{* 1, 2} THIJS VOGELS² MARTIN JAGGI² FRANÇOIS FLEURET^{1, 2}

¹IDIAP RESEARCH INSTITUTE, ²EPFL, SWITZERLAND ^{*}EQUAL CONTRIBUTION

prabhu.teja, florian.mai@idiap.ch

THE PROBLEM OF OPTIMIZER EVALUATION

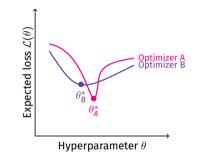


Figure: Two optimizers A & B with hyperparameter θ . Which one do we prefer in practice?

THE PROBLEM OF OPTIMIZER EVALUATION

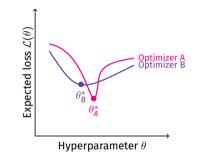
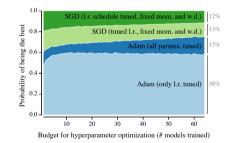


Figure: Two optimizers A & B with hyperparameter θ . Which one do we prefer in practice?

- 1. The absolute performance of the optimizer $\rightarrow \mathcal{L}(\theta_{A}^{\star})$, $\mathcal{L}(\theta_{B}^{\star})$
- 2. Difficulty of finding good hyperparameter configuration $\approx \theta_A^{\star}, \theta_B^{\star}$.

THE PROBLEM OF OPTIMIZER EVALUATION: SGD VS ADAM

- 1. SGD often achieves better peak performance than Adam in previous literature
- 2. We take into cognizance the cost of automatic Hyperparameter Optimization (HPO), and find:



Our method eliminates human biases arising from manual hyperparameter tuning.

REVISITING THE NOTION OF AN OPTIMIZER

Definition

An optimizer is a pair $\mathcal{M} = (\mathcal{U}_{\Theta}, p_{\Theta})$, which applies its update rule $\mathcal{U}(S_t; \Theta)$ at each step t depending on its current state S_t . Its hyperparameters $\Theta = (\theta_1, \dots, \theta_N)$ have a prior probability distribution $p_{\Theta} : (\Theta \to \mathbb{R})$ defined.

 p_{Θ} should be specified by the optimizer designer, e.g., Adam's $\epsilon > 0$ and close to $0 \implies \epsilon \sim \text{Log-uniform}(-8, 0)$ Algorithm 1 Benchmark with 'expected quality at budget'

input: optimizer *O*, cross-task hyperparameter prior p_{Θ} , task *T*, tuning budget *B* **Initialize** *list* \leftarrow [].

for R repetitions do

Perform random search with budget B:

- $S \leftarrow \text{sample } B \text{ elements from } p_{\Theta}$.
- $list \leftarrow [BEST(S), \dots list].$

return MEAN(list), VAR(list), or other statistics

Calibrated task independent priors p_{Θ}

Optimizer	Tunable parameters	Cross-task prior
SGD	Learning rate Momentum Weight decay Poly decay (p)	??
Adagrad	Learning rate	
Adam	Learning rate β_1, β_2 ϵ	

Calibrated task independent priors p_{Θ}

Optimizer	Tunable parameters	Cross-task prior
SGD	Learning rate Momentum Weight decay Poly decay (<i>p</i>)	??
Adagrad	Learning rate	
Adam	$\begin{array}{l} \text{Learning rate} \\ \beta_{1}, \beta_{2} \\ \epsilon \end{array}$	

- Sample a large number of points and their performance from a large range of admissible values
- Maximum Likelihood Estimate (MLE) of the prior's parameters using the top 20% performant values from the previous step.

Calibrated task independent priors p_{Θ}

Optimizer	Tunable parameters	Cross-task prior
SGD	Learning rate Momentum Weight decay Poly decay (p)	Log-normal(-2.09, 1.312) U[0, 1] Log-uniform(-5, -1) U[0.5, 5]
Adagrad	Learning rate	Log-normal(-2.004, 1.20)
Adam	Learning rate eta_1, eta_2 ϵ	Log-normal(-2.69, 1.42) 1- Log-uniform(-5, -1) Log-uniform(-8, 0)

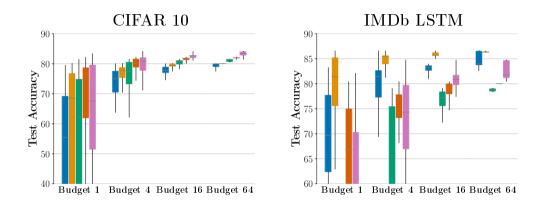
- Sample a large number of points and their performance from a large range of admissible values
- Maximum Likelihood Estimate (MLE) of the prior's parameters using the top 20% performant values from the previous step.

THE IMPORTANCE OF RECIPES

Optimizer label	Tunable parameters
SGD-M ^C W ^C SGD-M ^C D SGD-MW	$\begin{array}{l} SGD(\gamma,\mu=\!\!0.9,\lambda=\!\!10^{-5})\\ SGD(\gamma,\mu=\!\!0.9,\lambda=\!\!10^{-5}) \texttt{ + Poly Decay}(p)\\ SGD(\gamma,\mu,\lambda) \end{array}$
Adam-LR Adam	Adam(γ , $\beta_1=0.9$, $\beta_2=0.999$, $\epsilon=10^{-8}$) Adam(γ , β_1 , β_2 , ϵ)

SGD(γ, μ, λ) is SGD with γ learning rate, μ momentum, λ weight decay coefficient. Adagrad(γ) is Adagrad with γ learning rate, Adam($\gamma, \beta_1, \beta_2, \epsilon$) is Adam with learning rate γ , momentum parameters β_1, β_2 , and normalization parameter ϵ

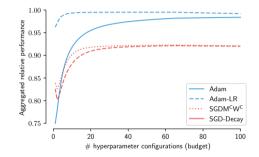
PERFORMANCE AT A BUDGET



Performance of Adam-LR, Adam, SGD-M^CW^C, SGD-MW, SGD-M^CD at various hyperparameter search budgets

prabhu.teja, florian.mai@idiap.ch

SUMMARIZING OUR FINDINGS



Summary statistics:

$$S(o,k) = rac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} rac{o(k,p)}{\max\limits_{o' \in \mathcal{O}} o'(k,p)},$$

where o(k, p) denotes the expected performance of optimizer $o \in O$ on test problem $p \in P$ after k iterations of hyperparameter search.

OUR FINDINGS

- 1. Support the hypothesis that adaptive gradient methods are easier to tune than non-adaptive methods
 - The substantial value of the adaptive gradient methods, specifically Adam, is its amenability to hyperparameter search.

OUR FINDINGS

- 1. Support the hypothesis that adaptive gradient methods are easier to tune than non-adaptive methods
 - The substantial value of the adaptive gradient methods, specifically Adam, is its amenability to hyperparameter search.
- 2. Tuning optimizers' hyperparameters apart from the learning rate becomes more useful as the available tuning budget goes up.
 - Even with relatively large tuning budget, tuning only the learning rate of Adam is the safer choice, as it achieves good results with high probability.

THANK YOU