Interference and Generalization in Temporal Difference Learning

Emmanuel Bengio

Joelle Pineau

Doina Precup

The setting:

- Deep Neural Networks
- Interference: $ho = \langle
 abla_{ heta} f(u_1),
 abla_{ heta} f(u_2)
 angle$

- Training: supervised vs reinforcement (TD, TD(λ), & PG)

We wish to understand the relation between **interference** and **generalization**, and how **Temporal Difference** affects both.

For the same data:

- TD tends to induce **unaligned** ($\rho = 0 \pm \epsilon$) representations
- SL tends to induce **aligned** ($\rho > 0$) representations
- increased alignment is correlated with:
 - a reduced generalization gap in TD
 - an increased generalization gap in SL
- TD and SL generalize differently! Even for RL data
- TD(λ) controls this behaviour ($\lambda = 1$ being \approx SL)

In more intuitive words/conjecture:

For the same data:

- TD tends to memorize its data
- SL tends to generalize
- further training:
 - breaks memorized structures in TD
 - creates memorized structures in SL (overfitting)
- TD and SL generalize differently! Even for RL data
- TD(λ) controls this behaviour ($\lambda = 1$ being \approx SL)

- Taylor expansion:

$$f(x,\theta') = f(x,\theta) + \underbrace{\nabla_{\theta} f(x)^{T} (\theta' - \theta)}_{} + (\theta' - \theta)^{T} \nabla_{\theta}^{2} f(x) (\theta' - \theta) + \dots$$

- stiffness (Fort et al., 2019):

angle
$$(\nabla f(x_1), \nabla f(x_2)) = \frac{\nabla f(x_1)^T \nabla f(x_2)}{\|\nabla f(x_1)\| \|\nabla f(x_2)\|}$$

Overfitting manifests differently

Supervised Data

Figure 1. Correlation coefficient r between the (log) function interference $\bar{\rho}$ and the generalization gap, as a function of training set size; shaded regions are bootstrapped 90% confidence intervals. We see different trends for value-based experiments (middle) than for supervised (left) and PG experiments (right).

Measuring gain (effective loss interference) for nearby states:

Measuring gain (effective loss interference) for nearby states:

ICML 2020

 $\mathsf{TD}(\lambda)$ smooths the TD target by taking into account (weighed) future predictions:

$$G^{\lambda}(S_t) = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G^n(S_t)$$
(1)

$$G^{n}(S_{t}) = \gamma^{n} V(S_{t+n}) + \sum_{j=0}^{n-1} \gamma^{j} R(S_{t+j})$$
(2)

Figure 5. Cosine similarity between gradients at S_t (offset x = 0) and the gradients at the neighboring states in the replay buffer (MsPacman). As λ increases, so does the temporal coherence of the gradients.

Increasing λ increases how fast the loss decreases (around s_t)

Local prediction variance

Local prediction variance

Two extra terms in the TD update's interference time derivative:

$$\begin{split} \rho_{reg;AB}' &= -\bar{\rho}_{AB}^2 \delta_B^2 - 2\delta_A \delta_B \bar{\rho}_{AB} \bar{\rho}_{BB} \\ &- \delta_A \delta_B^2 \nabla f_B (\bar{H}_A \nabla f_B + \bar{H}_B \nabla f_A) \\ \rho_{TD;AB}' &= -\delta_B^2 \bar{\rho}_{AB} (\bar{\rho}_{AB} - \gamma \bar{\rho}_{A'B}) - \delta_A \delta_B \bar{\rho}_{AB} (\bar{\rho}_{BB} - \gamma \bar{\rho}_{B'B}) \\ &- \delta_A \delta_B^2 \nabla f_B (\bar{H}_A \nabla f_B + \bar{H}_B \nabla f_A) \end{split}$$

 \rightarrow gradient variance induced by errors in predictions will be much larger for a high-capacity high-variance model

Interference update decomposition

DDQN and QL (no frozen target) have unstable updates, unlike Regression and DQN (frozen target):

- generalization dynamics in SL and $\text{DL} \rightarrow \text{different}$ parameterizations.
- in RL tasks, TD doesn't generalize as well as SL (even when the *f* to approximate is the same)
- find link between the complexity and variance of TD targets and interference
- $TD(\lambda)$ has generalization potential
- better optimizers for TD might improve things quite a lot!