
MetaFun: Meta-Learning 
with Iterative Functional Updates

Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam R. Kosiorek, Yee Whye Teh

37th International Conference on Machine Learning



Supervised Meta-Learning



Supervised Meta-Learning



Supervised Meta-Learning



Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?



Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?



Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?



Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

What is meta-learning? 
(in encoder-decoder approaches like CNP[1])



Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

What is meta-learning? 
(in encoder-decoder approaches like CNP[1])



Encoder-Decoder Approaches to Supervised Meta-Learning

“A model of  learning”

What is learning ?

What is meta-learning? 
(in encoder-decoder approaches like CNP[1])



Encoder-Decoder Approaches to Supervised Meta-Learning

Predicts conditioned 
on the representation.

Summarises 
the context



Encoder-Decoder Approaches to Supervised Meta-Learning

Predicts conditioned 
on the representation.

Summarises 
the context

Both parameterised by NNs



Incorporating Inductive Biases into Deep Learning Models

Classifier

Convolutional structure 
as inductive bias.

Dog



Classifier

Convolutional structure 
as inductive bias.

What are good 
inductive biases for

Incorporating Inductive Biases into Deep Learning Models

“a model of  learning”?

Dog



MetaFun Overview

What is a better form of set representation?



MetaFun Overview

What is a better form of set representation?

What are good inductive biases/structures 
for the encoder?



MetaFun Overview

Euclidean Space



MetaFun Overview

Euclidean Space

Function Space
(e.g. Hilbert Space)

Functional Representation



MetaFun Overview

Euclidean Space

Function Space
(e.g. Hilbert Space)

Functional Representation

Encoders with Iterative Structure



MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

(permutation of data points should not 
change set representation)



MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

[1][2][7]

(permutation of data points should not 
change set representation)



MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Fixed dimensional representation can be limiting for 
large set size[4], and often lead to underfitting[3].

[1][2][7]

(permutation of data points should not 
change set representation)



MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Fixed dimensional representation can be limiting for 
large set size[4], and often lead to underfitting[3].

[1][2][7]

(permutation of data points should not 
change set representation)



MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Fixed dimensional representation can be limiting for 
large set size[4], and often lead to underfitting[3].

Permutation invariance

Flexible capacity

Self-attention modules[6] or relation network[9] can 
model interaction within the context, but not 
context-target interaction

[1][2][7]

(permutation of data points should not 
change set representation)



MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Fixed dimensional representation can be limiting for 
large set size[4], and often lead to underfitting[3].

Self-attention modules[6] or relation network[9] can 
model interaction within the context, but not 
context-target interaction

[1][2][7]

(permutation of data points should not 
change set representation)



MetaFun Overview

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Euclidean Space

Function Space
(e.g. Hilbert Space)



MetaFun Overview

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Euclidean Space

Function Space
(e.g. Hilbert Space)

Learning to update representation with feedback 
is easier than learning representation directly



MetaFun Overview

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Euclidean Space

Function Space
(e.g. Hilbert Space)

Learning to update representation with feedback 
is easier than learning representation directly

Iterative structure may be a good inductive bias 
for “the model of learning”. (Learning algorithms 
are often iterative, such as gradient descent)
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Both the within-context interaction and the interaction 
between context and target are considered when 
updating the representation at each iteration.
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Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationModel Agnostic Meta-Learning (MAML)[8]

During meta-training phase, MAML finds a good 
initialisation from related tasks.

During test time, MAML runs a few gradient descent 
steps from the learned initialisation on the context of 
a new task.

Local updates
(following gradient)

                SumPooling
(permutation-invariant)

        FunPooling Local update function 
(parameterised by NNs)
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