
MetaFun: Meta-Learning
with Iterative Functional Updates

Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam R. Kosiorek, Yee Whye Teh

37th International Conference on Machine Learning

Supervised Meta-Learning

Supervised Meta-Learning

Supervised Meta-Learning

Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

What is meta-learning?
(in encoder-decoder approaches like CNP[1])

Encoder-Decoder Approaches to Supervised Meta-Learning

What is learning ?

What is meta-learning?
(in encoder-decoder approaches like CNP[1])

Encoder-Decoder Approaches to Supervised Meta-Learning

“A model of learning”

What is learning ?

What is meta-learning?
(in encoder-decoder approaches like CNP[1])

Encoder-Decoder Approaches to Supervised Meta-Learning

Predicts conditioned
on the representation.

Summarises
the context

Encoder-Decoder Approaches to Supervised Meta-Learning

Predicts conditioned
on the representation.

Summarises
the context

Both parameterised by NNs

Incorporating Inductive Biases into Deep Learning Models

Classifier

Convolutional structure
as inductive bias.

Dog

Classifier

Convolutional structure
as inductive bias.

What are good
inductive biases for

Incorporating Inductive Biases into Deep Learning Models

“a model of learning”?

Dog

MetaFun Overview

What is a better form of set representation?

MetaFun Overview

What is a better form of set representation?

What are good inductive biases/structures
for the encoder?

MetaFun Overview

Euclidean Space

MetaFun Overview

Euclidean Space

Function Space
(e.g. Hilbert Space)

Functional Representation

MetaFun Overview

Euclidean Space

Function Space
(e.g. Hilbert Space)

Functional Representation

Encoders with Iterative Structure

MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

(permutation of data points should not
change set representation)

MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

[1][2][7]

(permutation of data points should not
change set representation)

MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Fixed dimensional representation can be limiting for
large set size[4], and often lead to underfitting[3].

[1][2][7]

(permutation of data points should not
change set representation)

MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Fixed dimensional representation can be limiting for
large set size[4], and often lead to underfitting[3].

[1][2][7]

(permutation of data points should not
change set representation)

MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Fixed dimensional representation can be limiting for
large set size[4], and often lead to underfitting[3].

Permutation invariance

Flexible capacity

Self-attention modules[6] or relation network[9] can
model interaction within the context, but not
context-target interaction

[1][2][7]

(permutation of data points should not
change set representation)

MetaFun Overview

Euclidean Space

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Fixed dimensional representation can be limiting for
large set size[4], and often lead to underfitting[3].

Self-attention modules[6] or relation network[9] can
model interaction within the context, but not
context-target interaction

[1][2][7]

(permutation of data points should not
change set representation)

MetaFun Overview

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Euclidean Space

Function Space
(e.g. Hilbert Space)

MetaFun Overview

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Euclidean Space

Function Space
(e.g. Hilbert Space)

Learning to update representation with feedback
is easier than learning representation directly

MetaFun Overview

Functional Representation

Encoders with Iterative Structure

Permutation invariance

Flexible capacity

Within-context and context-target interaction

Euclidean Space

Function Space
(e.g. Hilbert Space)

Learning to update representation with feedback
is easier than learning representation directly

Iterative structure may be a good inductive bias
for “the model of learning”. (Learning algorithms
are often iterative, such as gradient descent)

MetaFun

solve

by iterative optimisation

Gradient Descent

MetaFun and Functional Gradient Descent

solve

by iterative optimisation

For supervised learning
problems, the objective
function often has this form:

solve

by iterative optimisation

Gradient Descent Functional Gradient Descent

MetaFun and Functional Gradient Descent

Gradient Descent Functional Gradient Descent

solve

by iterative optimisation

For supervised learning
problems, the objective
function often has this form:

solve

by iterative optimisation

MetaFun and Functional Gradient Descent

?

MetaFun and Functional Gradient Descent

?

MetaFun and Functional Gradient Descent

?

MetaFun and Functional Gradient Descent

?

MetaFun and Functional Gradient Descent

?

Evaluate functional representation at context:

MetaFun and Functional Gradient Descent

?

Local update funcion:

Evaluate functional representation at context:

MetaFun and Functional Gradient Descent

?

Local update funcion:

Evaluate functional representation at context:

Functional pooling:

MetaFun and Functional Gradient Descent

?

Local update funcion:

Evaluate functional representation at context:

Functional pooling:

MetaFun and Functional Gradient Descent

?

Local update funcion:

Evaluate functional representation at context:

Functional pooling:

MetaFun and Functional Gradient Descent

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration

MetaFun

will be the final representation after iterations

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationFunctional Representation

Permutation invariance ✔

Flexible capacity ✔

Within-context and context-target interaction

MetaFun

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationFunctional Representation

Permutation invariance ✔

Flexible capacity ✔

Within-context and context-target interaction ✔

Both the within-context interaction and the interaction
between context and target are considered when
updating the representation at each iteration.

MetaFun

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration

MetaFun

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration

Deep kernels or attention modules

MetaFun for Classification

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration

Deep kernels or attention modules

Regression:
MLP on concatenation of inputs

Classification:
?

MetaFun for Classification

?

Local update funcion:

Evaluate functional representation at context:

Functional pooling:

MetaFun for Classification

Local update funcion:

MetaFun for Classification

Local update funcion:

MetaFun for Classification

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration
Regression:
MLP on concatenation of inputs

Classification:
With structure similar to

Deep kernels or attention modules

MetaFun for Classification

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration
Regression:
MLP on concatenation of inputs

Classification:
With structure similar to

Deep kernels or attention modules

Incorporate label information into the
network structure rather than concatenating
the label to the inputs

MetaFun for Classification

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun Iteration

Incorporate label information into the
network structure rather than concatenating
the label to the inputs

Naturally integrate within-class and
between-class interaction

Regression:
MLP on concatenation of inputs

Classification:
With structure similar to

Deep kernels or attention modules

MetaFun for Classification

MetaFun and Gradient-Based Meta-Learning

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationModel Agnostic Meta-Learning (MAML)[8]

MetaFun and Gradient-Based Meta-Learning

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationModel Agnostic Meta-Learning (MAML)[8]

During meta-training phase, MAML finds a good
initialisation from related tasks.

During test time, MAML runs a few gradient descent
steps from the learned initialisation on the context of
a new task.

MetaFun and Gradient-Based Meta-Learning

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationModel Agnostic Meta-Learning (MAML)[8]

During meta-training phase, MAML finds a good
initialisation from related tasks.

During test time, MAML runs a few gradient descent
steps from the learned initialisation on the context of
a new task.

MetaFun and Gradient-Based Meta-Learning

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationModel Agnostic Meta-Learning (MAML)[8]

During meta-training phase, MAML finds a good
initialisation from related tasks.

During test time, MAML runs a few gradient descent
steps from the learned initialisation on the context of
a new task.

Local updates
(following gradient)

 SumPooling
(permutation-invariant)

MetaFun and Gradient-Based Meta-Learning

Local update funcion:

Functional pooling:

Apply functional updates:

MetaFun IterationModel Agnostic Meta-Learning (MAML)[8]

During meta-training phase, MAML finds a good
initialisation from related tasks.

During test time, MAML runs a few gradient descent
steps from the learned initialisation on the context of
a new task.

Local updates
(following gradient)

 SumPooling
(permutation-invariant)

 FunPooling Local update function
(parameterised by NNs)

MetaFun and Gradient-Based Meta-Learning

1D Sinusoid Regression Tasks

MetaFun and Gradient-Based Meta-Learning

1D Sinusoid Regression Tasks

MetaFun:
Smooth updates and
match the ground
truth very well across
the whole period.

MAML:
Non-smooth updates
and not as good
predictions
especially on the left
side where there is
no context points.

MetaFun and Gradient-Based Meta-Learning

1D Sinusoid Regression Tasks

MetaFun:
Smooth updates and
match the ground
truth very well across
the whole period.

MAML:
Non-smooth updates
and not as good
predictions
especially on the left
side where there is
no context points.

Large-Scale Few-shot Classification

miniImageNet tieredImageNet

Model 1-shot 5-shot

LEO[9] 61.76 ± 0.08% 77.59 ± 0.12%

MetaFun (deep kernel version) 61.16 ± 0.15% 78.20 ± 0.16%

MetaFun (attention version) 62.12 ± 0.30% 77.78 ± 0.12%

Model 1-shot 5-shot

LEO 66.33 ± 0.05% 81.44 ± 0.09%

MetaOptNet-SVM 65.81 ± 0.74% 81.75 ± 0.58%

MetaFun (deep kernel version) 67.27 ± 0.20% 83.28 ± 0.12%

MetaFun (attention version) 67.72 ± 0.14% 82.81 ± 0.15%

Model 1-shot 5-shot

LEO 63.97 ± 0.20% 79.49 ± 0.70%

MetaOptNet-SVM[10] 64.09 ± 0.62% 80.00 ± 0.45%

MetaFun (deep kernel version) 63.39 ± 0.15% 80.81 ± 0.10%

MetaFun (attention version) 64.13 ± 0.13% 80.82 ± 0.17%

(without data augmentation)

(with data augmentation)

(without data augmentation)

Large-Scale Few-shot Classification

miniImageNet tieredImageNet

Model 1-shot 5-shot

LEO[9] 61.76 ± 0.08% 77.59 ± 0.12%

MetaFun (deep kernel version) 61.16 ± 0.15% 78.20 ± 0.16%

MetaFun (attention version) 62.12 ± 0.30% 77.78 ± 0.12%

Model 1-shot 5-shot

LEO 66.33 ± 0.05% 81.44 ± 0.09%

MetaOptNet-SVM 65.81 ± 0.74% 81.75 ± 0.58%

MetaFun (deep kernel version) 67.27 ± 0.20% 83.28 ± 0.12%

MetaFun (attention version) 67.72 ± 0.14% 82.81 ± 0.15%

Model 1-shot 5-shot

LEO 63.97 ± 0.20% 79.49 ± 0.70%

MetaOptNet-SVM[10] 64.09 ± 0.62% 80.00 ± 0.45%

MetaFun (deep kernel version) 63.39 ± 0.15% 80.81 ± 0.10%

MetaFun (attention version) 64.13 ± 0.13% 80.82 ± 0.17%

(without data augmentation)

(with data augmentation)

(without data augmentation)

We demonstrates that encoder-decoder style meta-learning methods like conditional neural processes
can also also achieves SOTA on large-scale few-shot classification benchmarks.

Large-Scale Few-shot Classification

We demonstrates that encoder-decoder style meta-learning methods like conditional neural processes
can also also achieves SOTA on large-scale few-shot classification benchmarks.

Functional set representation

Iterative structure for the encoder?

Thank you!

jin.xu@stats.ox.ac.uk

@jinxu06 (code available here)

@jinxu06

mailto:jin.xu@stats.ox.ac.uk

References

[1] Garnelo, Marta, et al. "Conditional Neural Processes." International Conference on Machine Learning. 2018.
[2] Garnelo, Marta, et al. "Neural processes." arXiv preprint arXiv:1807.01622 (2018).
[3] Kim, Hyunjik, et al. "Attentive neural processes." International Conference on Learning Representations. 2019.
[4] Wagstaff, Edward, et al. "On the Limitations of Representing Functions on Sets." International Conference on
Machine Learning. 2019.
[5] Bloem-Reddy, B. and Teh, Y. W. "Probabilistic symmetries and invariant neural networks." Journal of Machine
Learning Research, 21(90):1–61, 2020.
[6] Lee, Juho, et al. "Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks."
International Conference on Machine Learning. 2019.
[7] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems. 2017.
[8] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks." International Conference on Machine Learning. 2017.
[9] Rusu, Andrei A., et al. "Meta-learning with latent embedding optimization." International Conference on Learning
Representations. 2019.
[10] Lee, Kwonjoon, et al. "Meta-learning with differentiable convex optimization." Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2019.

