Confidence-Calibrated Adversarial Training Generalizing to Unseen Attacks

David Stutz, Matthias Hein, Bernt Schiele

Problem: Robustness to *various* adversarial examples. Adversarial training on L_{∞} adversarial examples:

Problem: Robustness to *various* adversarial examples. Adversarial training on L_{∞} adversarial examples:

Problem: Robustness to various adversarial examples. Adversarial training on L_{∞} adversarial examples:

Summary of adversarial training:

- High-confidence on adversarial examples ($\leq \epsilon$).
- No generalization to larger/other L_p perturbations.
- Behavior not meaningful for arbitrarily large ϵ .

Confidence-calibrated adversarial training (L_{∞} only):

Confidence-calibrated adversarial training (L_{∞} only):

Confidence-calibrated adversarial training (L_{∞} only):

Adversarial training:

High-confidence on adversarial examples.
 No robustness to *unseen* perturbations.

Confidence-calibrated adversarial training:

- ► Low-confidence on adversarial examples.
- Robustness to unseen perturbations by confidence thresholding.

Interested?

More details:

Paper & code: davidstutz.de/ccat
Contact: david.stutz@mpi-inf.mpg.de

Interested?

More details:

Paper & code: davidstutz.de/ccat
Contact: david.stutz@mpi-inf.mpg.de

Outline:

- 1. Problems of adversarial training
- 2. Confidence-calibrated adversarial training
- 3. Confidence-thresholded robust test error
- 4. Results on SVHN and CIFAR10

Problems of Adversarial Training

Problems of Adversarial Training

Min-max formulation:

max planck institut

Confidence-Calibrated Adversarial Training

1 Transition to uniform distribution on adversarial examples within the ϵ -ball:

• Low-confidence extrapolated beyond ϵ -ball.

Confidence-Calibrated Adversarial Training

1 Transition to low confidence on adversarial examples within the ϵ -ball.

2 Reject low-confidence (adversarial) examples via confidence-thresholding:

Transition to Low Confidence

1. Compute high-confidence adversarial examples:

$$\tilde{\delta} = \max_{\|\delta\|_{\infty} \le \epsilon} \max_{k \neq y} f_k(x + \delta; w)$$

2. Impose target distribution via cross-entropy loss:

 $\tilde{y} = \lambda$ one hot $(y) + (1 - \lambda)^{1/K}$

1 Transition to Low Confidence

1. Compute high-confidence adversarial examples:

$$\tilde{\delta} = \max_{\|\delta\|_{\infty} \le \epsilon} \max_{k \neq y} f_k(x + \delta; w)$$

2. Impose target distribution via cross-entropy loss:

2 Robustness by Confidence Thresholding

eq)

2 Robustness by Confidence Thresholding

2 Robustness by Confidence Thresholding

2 Meaningful Extrapolation of Confidence

Adversarial training:

Confidence-calibrated adversarial training:

Summary: Generalizable Robustness

Confidence-calibrated adversarial training:

- **1** Transition: low confidence on adversarial examples.
- 2 Reject low-confidence (adversarial) examples.

"Standard" Robust Test Error RErr

= error on test examples that are "attacked".

Adversarial Training (AT): 57.3% RErr

Ours (CCAT): 97.8% RErr

"Standard" Robust Test Error RErr

= error on test examples that are "attacked".

Confidence-Thresholded RErr

= error on test examples that are "attacked" and *pass* confidence thresholding.

Adversarial Training (AT): **56%** (-1.3%)

Determine Confidence Threshold

- Independent of adversarial examples.
- Avoid incorrectly rejecting (clean) test examples.

Confidence threshold at 99% true positive rate TPR:

Results

Datasets: SVHN, CIFAR10, 1000 test examples.

Per-example, worst-case (thresholded) RErr across:

Iterations	Restarts
200-1000	10-50
1000	11
1000	10
5000	1
1000	1
_	5000
	Iterations 200-1000 1000 5000 1000 –

(† Black-box attacks.)

Attacks adapted to maximize confidence.

SVHN: Generalization to Unseen Attacks

SVHN: RErr \downarrow in % at 99%TPR					
	L_{∞}				
	$\epsilon = 0.03$				
	seen				
AT	56.0				
CCAT	39.1				

(Lower RErr ↓ means "better" robustness.)

SVHN: Generalization to Unseen Attacks

SVHN: RErr \downarrow in % at 99%TPR						
	L_{∞}	L_{∞}	L_2	L_1	L_0	
	$\epsilon = 0.03$	$\epsilon = 0.06$	$\epsilon = 2$	$\epsilon = 24$	$\epsilon = 10$	
	seen	unseen	unseen	unseen	unseen	
AT	56.0					
CCAT	39.1					

(Lower RErr ↓ means "better" robustness.)

SVHN: Generalization to Unseen Attacks

SVHN: RErr \downarrow in % at 99%TPR						
	L_{∞} L_{∞} L_{2} L_{1} L_{0}					
	$\epsilon = 0.03$	$\epsilon = 0.06$	$\epsilon = 2$	$\epsilon = 24$	$\epsilon = 10$	
	seen	unseen	unseen	unseen	unseen	
AT	56.0	88.4	99.4	99.5	73.6	
CCAT	39.1	53.1	29.0	31.7	3.5	

(Lower RErr ↓ means "better" robustness.)

Cifar10: Generalization to Unseen Attacks

CIFAR10: RErr \downarrow in % at 99%TPR						
	L_{∞} L_{∞} L_{2} L_{1} L_{0}					
	$\epsilon = 0.03$	$\epsilon = 0.06$	$\epsilon = 2$	$\epsilon = 24$	$\epsilon = 10$	
	seen	unseen	unseen	unseen	unseen	
AT	62.7	93.7	98.4	98.4	72.4	
CCAT	67.9	92.0	51.8	58.5	20.3	

(Lower RErr \downarrow means "better" robustness.)

"Unconventional" Attacks

CIFAR10: RErr, FPR and CErr at 99%TPR						
	adv.	dictal	oorruptod			
	frames	uistai	conupleu			
	unseen unseen unseen					
	RErr ↓	FPR↓	CErr↓			
Normal	96.6	83.3	12.3			
AT	78.7	75.0	16.2			
CCAT	65.1	0	8.5			

(FPR: false positive rate, fraction of non-rejected adv. examples.)

(CErr: test error on corrupted examples after thresholding.)

Improved Accuracy

	SVHN:		CIFAR10:	
	$Err\downarrowin~\%$		Err↓in %	
	no	99%	no	99%
	reject	TPR	reject	TPR
Normal	3.6	2.6	8.3	7.4
AT	3.4	2.5	16.6	15.5
CCAT	2.9	2.1	10.1	6.7

(Err: test error before and after thresholding.)

Confidence-Calibrated Adversarial Training

Low-confidence on adversarial examples and beyond.

- Robustness generalizes to unseen attacks.
- Accuracy improves.

Paper & code: davidstutz.de/ccat

