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Deep Learning on Noisy Labels

Deep networks are very good at memorizing the noisy labels (Zhang et al. 2017).

Memorization leads to a critical issue since noisy labels are inevitable in big data.

Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." ICLR (2017).



Controlled Noisy Labels

Performing controlled experiments on noisy labels is essential in existing works.

_________________________________________

noise level=20% 40% 80%



Issues with Controlled Synthetic Labels

Issue: existing studies only perform controlled experiments on synthetic labels (or random labels).



Issues with Controlled Synthetic Labels

Issue: existing studies only perform controlled experiments on synthetic labels (or random labels).

1. Contradictory findings.
For example, DNNs are robust to massive label noise?

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Deep Learning is Robust to Massive Label Noise
Our central finding can be summarized as:

Deep neural networks easily fit random labels. David Rolnick ! Andreas Veit > Serge Belongie® Nir Shavit’

(Zhang et al. 2017)

(Rolnick et al. 2017)



Issues with Controlled Synthetic Labels

Issue: existing studies only perform controlled experiments on synthetic labels (or random labels).

2. Inconsistent empirical results
We found that methods that perform well on synthetic noise may not work as well on
real-world noisy labels.




Our Contributions:

1.  We establish the first benchmark of controlled real-world label noise (from the web).

2. A simple but highly effective method to overcome both synthetic and real-world noisy labels
(best results on the WebVision benchmark)

3. We conduct the largest study by far into understanding deep neural networks trained on noisy

labels across different noise levels, noise types, network architectures, methods, and training
settings.



Contribution I: New Dataset
First benchmark of controlled real-world label noise



Datasets of noisy training labels
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@ adversarial attack  (Zhang et al, 2079a)
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Datasets of noisy training labels

@ uncontrolled  WebVision,

ClothingTM etc.
@ real-world our work
@ label ? Controlled — Missing
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Construction of controlled synthetic label noise

N ——— \ 1. Starts with a well-labeled dataset.

2. Randomly selects p% examples.

3. Independently flips each label to a random
incorrect class (symmetric or asymmetric).

4. Repeats Step 1-3 with a different p (noise

level)
Mini-ImageNet
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Construction of controlled synthetic label noise

N ——— \ 1. Starts with a well-labeled dataset.

2. Randomly selects p% examples.

o 3. Independently flips each label to a random

C X ] incorrect class (symmetric or asymmetric).

® 4. Repeats Step 1-3 with a different p (noise
level)

noise level p = 40%

This process generates controlled synthetic label noise.
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Construction of uncontrolled web label noise

GO gle ladybug

_________________________ Q Al (&) Images [*) videos ) Shopping & News
[ \

! label correctness |
d 1
' unknown !

_________________________

baynature.org

noise level p = 2?%

This process can automatically collect noisy labeled images from the web.
But the noise level is fixed and unknown (unsuitable for controlled studies).



Datasets of noisy training labels

. real-world
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. synthetic
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From uncontrolled to controlled noise

GO gle ladybug

Q Al [& Images [ Videos < Shopping @ News
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noise level p is known

We have each retrieved image annotated by 3-5 works using Google Cloud Labeling Service
https://cloud.google.com/ai-platform/data-labeling/docs



https://cloud.google.com/ai-platform/data-labeling/docs

Construction of our dataset

_________________________________________ 1. Starts with a well-labeled dataset.

apaaa-—"

A ) 2. Randomly selects p% examples.

3. Replaces the clean images with the
incorrectly labeled web images while
leaving the label unchanged*.

4. Repeats Step 1-3 with a different p (noise
level)

*We show that an alternative way to construct the dataset by removing all image-to-image results leads to

consistent results in the Appendix
Google



Our Dataset: Controlled Noisy Labels from the Web

Manually annotate 212K images through 800K annotations.
We establish the first benchmark of controlled web label noise for two classification tasks:
coarse (Mini-ImageNet) and fine-grained (Stanford Cars)

Table 1. Overview of our datasets of controlled red (web) label noise. Blue (synthetic) label noise is also included for comparison.
Dataset #Class Noise Source Train Size Val Size Controlled Noise Levels (%)

Red Mini-ImageNet 00 image search label 50,000 5.000 0, 5, 10, 15, 20, 30, 40, 50, 60, 80
Blue Mini-ImageNet symmetric label flipping 60,000 d 0,5, 10, 15, 20, 30, 40, 50, 60, 80
Red Stanford Cars 196 image search label 8,144 3041 0,5, 10, 15, 20, 30, 40, 50, 60, 80

Blue Stanford Cars symmetric label flipping 8,144 0,5, 10, 15, 20, 30, 40, 50, 60, 80




Our Dataset: Controlled Noisy Labels from the Web

Manually annotate 212K images through 800K annotations.
We establish the first benchmark of controlled web label noise for two classification tasks:
coarse (Mini-ImageNet) and fine-grained (Stanford Cars)

Table 1. Overview of our datasets of controlled red (web) label noise. Blue (synthetic) label noise is also included for comparison.
Dataset #Class Noise Source Train Size Val Size Controlled Noise Levels (%)

Red Mini-ImageNet 00 image search label 50,000 5.000 0, 5, 10, 15, 20, 30, 40, 50, 60, 80
Blue Mini-ImageNet symmetric label flipping 60,000 ’ 0, 5, 10, 15, 20, 30, 40, 50, 60, 80
Red Stanford Cars 196 image search label 8,144 3041 0,5, 10, 15, 20, 30, 40, 50, 60, 80
Blue Stanford Cars symmetric label flipping 8,144 ’ 0, 5, 10, 15, 20, 30, 40, 50, 60, 80

Red noise: label noise from the web

S NN
Itis)Your Time Toum Blue noise: synthetic label noise
Choose'From The Matrix
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Mini-ImageNet

Stanford Cars

Difference Blue Noise Red Noise
Visual & semantic similarity to true positive images Low High
Instance-level noise No Yes

Latent class vocabulary from which images are sampled Fixed vocabulary

Open vocabulary

true positive blue noise red noise




Contribution II: New Method

to overcome synthetic and real-world label noise



Overview

Problem: Given a noisy dataset of some unknown noise level, find a robust learning method
that generalizes well on the clean test data.

Prior works: Many techniques tackle it from multiple directions, among others,
e Regularization (Azadiet al., 2016; Noh et al., 2017; etc.)
e Label cleaning (Reed et al., 2014; Goldberger, 2017; Li et al., 2017b; Veit et al., 2017; Song et al., 2019; etc.)
e Example weighting (Jiang et al., 2018; Ren et al., 2018; Shu et al., 2019; Jiang et al., 2015; Liang et al., 2016; etc.)
e Data augmentation (zhang et al., 2018; Cheng et al., 2019)

Our Method: a simple and effective method called MentorMix.

Why need yet another method? We show our method overcomes both synthetic and
real-world noisy labels.



Method

MentorMix is inspired by MentorNet (for curriculum learning) and Mixup (for vicinal risk minimization).
It comprise four steps: weight', sample, mixup, and weight again?.

Weight = Sample = Mixup — Weight

>
forward pass o
MentorNet [—> e —>
|

sample weight
IossT

distribution

E— StudentNet

MentorMix Method

mini-batch

1. The simplest MentorNet form is a loss thresholding function: v; = 1(¢(x;,y;) <)
2. We found second weighting is useful for high noise levels.

Jiang, Lu, et al. "Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels." ICML 2018.
Zhang, Hongyi, et al. "mixup: Beyond empirical risk minimization." ICLR 2017.



https://docs.google.com/file/d/1FmXNsukFPB-69VP__V0dyaDt1blwblhz/preview

Experimental Results

MentorMix: A simple but highly effective method to overcome both synthetic and real-world noisy labels.

On our dataset

each cell is the mean of 10 different noise levels from

0% to 80%

Table 2. Peak accuracy (%) of the best trial of each method averaged across 10 noise levels. — denotes the method is failed to train.

/

Mini-ImageNet Stanford Cars
Maéttiod Fine-tuned Trained from scratch Fine-tuned Trained from scratch
Blue Red Blue Red Blue Red Blue ~__Red /
Vanilla 823+19 81.6+1.9 | 58.3+10.3 64.9+5.2 | 70.0+16.8 82.4+6.9 | 53.8424.4 1+ 77.7+10.4 |
WeightDecay 819+1.8 81.5+1.8 —_ — 7224175 84.346.6 —_ e S
Dropout 82.8+1.3 81.84+1.8 | 59.3+9.5 65.74+5.0 | 71.7+£16.9 83.846.6 | 62.8423.5 84.1+6.7
S-Model 82.3+1.8 82.0+1.9 | 58.7+10.2 64.6£5.1 | 69.7+16.8 82.4+7.1 | 53.9423.5 77.6+10.2
Boostrap 83.11.6 82.7+1.8 | 60.1£9.7 65.5+4.9 | 71.7£16.9 82.846.7 | 55.6£239 78.949.6
Mixup 81.7+1.8 824417 | 60.7+9.8 66.04+49 | 73.1+16.6 85.0+6.2 | 64.2+21.6 82.5+8.0
MentorNet 829+1.7 824417 | 61.8+10.3 65.14£5.0 | 759+16.8 82.64+6.6 | 56.84+23.1 78.9+8.9
Ours (MentorMix) | 84.2+0.7 83.3+1.9 | 70.9+34 67.0+£5.0 | 78.2+16.2 86.9+5.5 | 67.7+23.0 83.6+7.5

Methods which perform well on synthetic noise may not work as well on real-world noisy labels, and vice versa.
MentorMix is able to overcome both synthetic and real-world noisy labels




Experimental Results

MentorMix: A simple but highly effective method to overcome both synthetic and real-world noisy labels.

On public CIFAR (synthetic noise) On public WebVision (real-world noise)

Table 3. Comparison with the state-of-the-art in terms of the vali-
dation accuracy on CIFAR-100 (top) and CIFAR-10 (bottom).

Noise level (%) Table 4. Comparison with the state-of-the-art on the clean valida-

- letiion 20 40 60 80 tion set of ILSVRC12 and WebVision. The number outside (inside)

= Arazo et al. (2019) 737 701 595 395 the parentheses denotes the top-1 (top-5) classification accuracy

i Zhang & Sabuncu (2018)  67.6  62.6 540 296 (%). T marks the method trained using extra verification labels.

< MKE::::N?z (()21% 1) 8) ;gg gz-g gég 431(5)? Data | Method ILSVRCI2  WebVision
3 - P L (2019 74‘1 69.2 39'4 a Full Lcc.et al. (2018)7 60.2(81.1) 68.5(86.5)
uang et al. (2019) : : ; Full | Vanilla 61.7(82.4)  70.9(88.0)
Ours (MentorMix) _ 786 713 646 d43.8 Full | MentorNet (2018)f  64.2(84.8)  72.6(88.9)

Arazo et al. (2019) 94.0 928 903 74.1

Zhang & Sabuncu (2018) 897 87.6 827 67.9 Full | Guo etal. (2018)f 64.8(84.9)  72.1(89.2)

Full | Saxena et al. (2019) 65.7(—)

o —

= Lee.etal. (019) 8L.1 88 D4 = Full | Ours (MentorMix)  67.5(87.2)  74.3(90.5)
< Chen et al. (2019) 89.7 - - 523 —

= Huangetal (2019) 926 903 463 - Mini | MentorNet (2018)  63.8(85.8) —

& \Resieitiet (o015} G0 515 a5 45 Mini | Chenetal. (2019)  61.6(85.0) 65.2(85.3)

Mixup (2018) 040 915 868 769 Mini | Ours (MentorMix) 72.9(91.1)  76.0(90.2)
Ours (MentorMix)f 95.6 942 913 81.0

Google




Experimental Results

MentorMix: A simple but highly effective method to overcome both synthetic and real-world noisy labels.

On public CIFAR (synthetic noise)

Table 3. Comparison with the state-of-the-art in terms of the vali-
dation accuracy on CIFAR-100 (top) and CIFAR-10 (bottom).

Noise level (%)

s i 20 40 60 80
o Arazo et al. (2019) 737 70.1 595 395
bt Zhang & Sabuncu (2018) 67.6 626 54.0 29.6
Eé MentorNet (2018) 735 685 612 355
= Mixup (2018) 739 66.8 58.8 40.1
o Huang et al. (2019) 741 692 394 -

Ours (MentorMix) 786 713 64.6 488

Arazo et al. (2019) 940 928 903 74.1

- Zhang & Sabuncu (2018) 89.7 87.6 827 679
= Lee et al. (2019) 87.1 81.8 754 -

< Chen et al. (2019) 89.7 - - 523
é Huang et al. (2019) 926 903 463 -

MentorNet (2018) 920 91.2 742 60.0

Mixup (2018) 940 915 868 769

Ours (MentorMix)f 95.6 942 913 81.0

Google

On public WebVision (real-world noise)

Table 4. Comparison with the state-of-the-art on the clean valida-
tion set of ILSVRCI12 and WebVision. The number outside (inside)
the parentheses denotes the top-1 (top-5) classification accuracy
(%). 1 marks the method trained using extra verification labels.

Data | Method ILSVRC12  WebVision

Full | Leeetal. (2018)7 60.2(81.1)  68.5(86.5)
Full | Vanilla 61.7(82.4)  70.9(88.0)
Full | MentorNet (2018)f 64.2(84.8) 72.6(88.9)
Full | Guo etal. (2018)f 64.8(84.9) 72.1(89.2)
Full | Saxena et al. (2019) —_ 65.7(—)

{ Full | Ours (MentorMix) ~~ 67.5(87.2) ~ 74.3(90.5)
Mini | MentorNet (2018) " 63.8(85.8) ~— 7 ,
Mini | Chen et al. (2019) 61.6(85.0)  65.2(85.3)
Mini | Ours (MentorMix) 72.9(91.1)  76.0(90.2)

The best-published result on the WebVision benchmark!




Contribution lll: New findings
on real-world label noise



Contribution Il

We conduct the largest study by far into understanding deep neural networks trained on noisy labels.

Our study confirms existing findings on synthetic noisy labels, and brings forward new findings that may
challenge our preconception.



Blue Noise (symmetric)

(1) DNNs generalize poorly on synthetic label noise
(Zhang et al., 2017).

Colored belt plots the 95% confidence
interval across 10 noise levels.
Wider belt — poorer generalization
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Blue Noise (symmetric) Red Noise (web)

(1) DNNs generalize poorly on synthetic label noise DNNs generalize much better on the web
(Zhang et al., 2017). label noise.

Colored belt plots the 95% confidence
interval across 10 noise levels.
Wider belt — poorer generalization
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Blue Noise (symmetric) Red Noise (web)

DNNs generalize much better on the web

(1) DNNs generalize poorly on synthetic label noise
label noise.

(Zhang et al., 2017).
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Accuracy

Blue Noise (symmetric)

(2) DNNs learn pattern first on noisy training
labels (Arpit et al., 2017)
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Blue Noise (symmetric) Red Noise (web)

(2) DNNs learn pattern first on noisy training DNNs may NOT learn pattern first on the web
labels (Arpit et al., 2017) label noise
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Figure 3. Performance drop from the peak accuracy at different
noise levels. Colors are used to differentiate noise types.




Conclusions



Clean Data Blue Noise and Red Noise

ImageNet architectures generalize on clean training labels It also holds on noisy labels.

when the networks are fine-tuned (Kornblith et al., 2019).
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ImageNet architectures generalize on noisy labels when the networks are fine-tuned.
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Key takeaways:

1.  We proposed:
a. the first benchmark of real-world controlled label noise (from the web),
b. asimple method (MentorMix) to overcome both synthetic and real-world noisy labels.

2. We found:
a. Deep networks may NOT learn patterns first but generalize much better on the
real-world label noise from the web.
b. Methods which perform well on synthetic noise may not work as well on the real-world
noisy labels from the web.
Advanced pretrained architectures are better at overcoming noisy labels.
Further using MentorMix yields the best results.

Qo0

Thanks for watching. Please find our data and code at:
http://www.lujiang.info/cnlw



http://www.lujiang.info/cnlw

Appendix



Contribution |l

MentorMix consists of two key operations:
MentorNet (for curriculum learning) and Mixup (for vicinal risk minimization).

Algorithm 1 The proposed MentorMix method.

Input :mini-batch D,,; two hyperparameters 7y, and «

Output : the loss of the mini-batch

For every (x;,y;) in D,,, compute £(x;, ;)

Set £,,(Dxm) to be the 7,-th percentile of the loss {£(xi,yi)}. MentorNet as _

v < EMA(¢,(D,,)) // update the moving average importance sampling
vy < MentorNet(¢(x;,yi),7) // MentorNet weight

Compute P, = softmax(v"), where v* = [v], -+ ,v/p ]

Stop gradient

foreach (x;,yi)do

We use t he.simplest Men.torNet Draw a sample (x;,y;) with replacement from P,
here which is a thresholding A < Beta(a, a)

function: 10 A vf max(A, 1 — ) + (1 —vf)min(\, 1 — ) : PR,
v | B i e D Mixup for minimizing the

U;lk = 1(6(@'“ yz) < ’Y) 12 yij — Ay + (1 - )\)yj vicinal risk
13 Compute ¢; = £(X;j,¥i;)
14 end
15 return (1/|Dy|) S\0m 1 ¢,

e

e e NN U AR W N -

Jiang, Lu, et al. "Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels." ICML 2018
Zhang, Hongyi, et al. "mixup: Beyond empirical risk minimization." ICLR 2017.




Weight — Sample — Mixup — Weight
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