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Key	Ideas:

Use	long-term	planning	with	the	world	model	to	explore	the	

environment,	collecting	novel	data	

This	data	is	used	to	train	the	model	to	further	improve	the	

exploration

Same	model	is	later	used	to	plan	for	new	tasks	at	test	time
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- Schmidhuber’01,	Pathak’17

- High	outside	training	data
- Lakshminarayanan’17,	Pathak’19,	Shyam’19

- High	only	outside	training	data

[Figure	from	Lakshminarayanan’17]

Model	Error Model	Disagreement

- True function

- Data points

- Prediction of the model 

- Model Variance
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Practical	Considerations:
The	ensemble	is	composed	of	light-weight	one-step	models	
predicting	the	encoding	of	the	image,	rather	than	the	image	
themselves.	
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Disagreement



Planner

Planning	to	Explore

Latent
State

Encoder

World 
Model

Features ht

Image

ot

st

Action at Imagination Rollout of the World Model

at

ht

aT

Intrinsic 
Reward

Vt

…

VT

st st+1 sT

Vt+1 at+1

Intrinsic 
Reward

Intrinsic 
Reward

Intrinsic Reward ≜ Latent 
Disagreement

w1

st at

w2

st at

wK

st at

…

Planning in the Latent Space

Practical	Considerations:
A	parametric	policy	is	used	for	quick	inference,	and	is	
trained	completely	in	the	imagination	of	the	world	model



Self-Supervised	Exploration	Results



How	do	we	go	from	exploration	to	solving	tasks?
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Practical	Considerations:
A	new	reward	predictor	is	trained	for	solving	tasks	at	test-
time	by	relabling the	replay-buffer	with	task	rewards,	
without	any	additional	interactions
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Experiments	Outline	

1. Solving	a	new-task	in	zero-shot

2. What	if	we	add	20	supervised	episodes?	

3. Multi-task	performance
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Zero-Shot	Reinforcement	Learning
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Few-Shot	Adaptation
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Can	one	model	be	used	for	multiple	tasks?



Key	Takeaways

• Self-supervised	performance	comparable	to	Supervised	Oracle

• Few	supervised	samples	provide	large	boost	in	performance

• Perform	several	tasks	by	training	dynamics	only	once

Key	Takeaways
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Thank	you!

Code	and	videos	at:

https://ramanans1.github.io/plan2explore/


