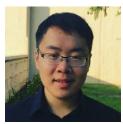
# Visual Grounding of Learned Physical Models ICML 2020



Yunzhu Li



Toru Lin\*



Kexin Yi\*



Daniel M. Bear



Daniel L.K. Yamins



Jiajun Wu

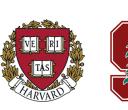
Joshua B. Tenenbaum



Antonio Torralba

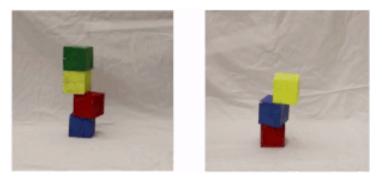
http://visual-physics-grounding.csail.mit.edu/

(\* indicates equal contribution)



#### **Intuitive Physics**

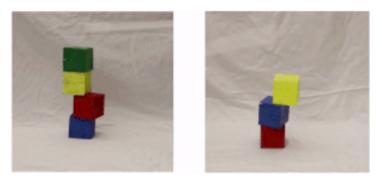
- (1) Distinguish between different instances
- (2) Recognize objects' physical properties
- (3) Predict future movements



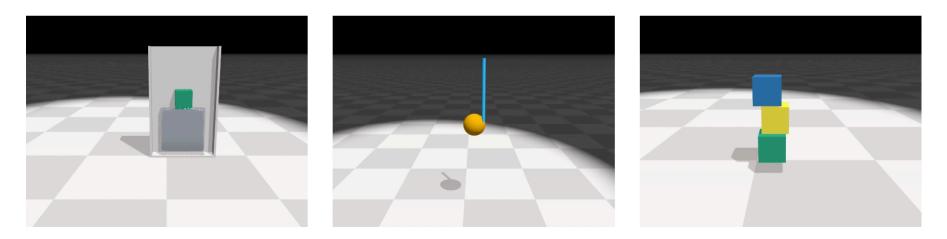
(Wu et al., Learning to See Physics via Visual De-animation)

#### **Intuitive Physics**

- (1) Distinguish between different instances
- (2) Recognize objects' physical properties
- (3) Predict future movements



(Wu et al., Learning to See Physics via Visual De-animation)



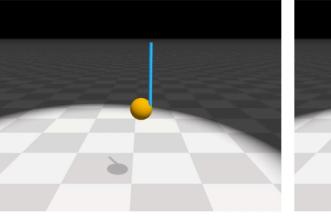
#### For example

Different physical parameters lead to different motions.

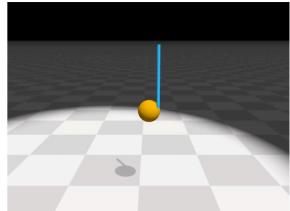
Estimating physical parameter by comparing mental simulation with observation

#### Larger stiffness

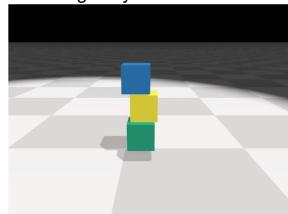
Larger gravity

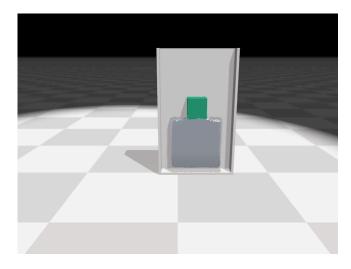


#### Smaller stiffness

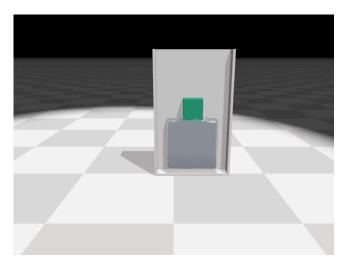


#### Smaller gravity



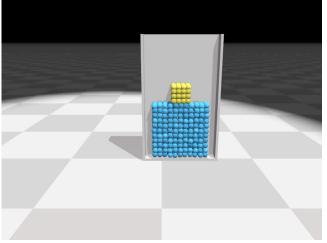


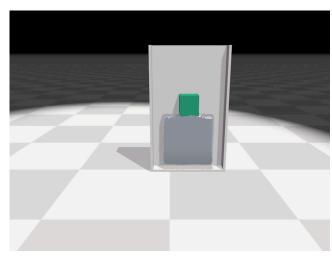
Physical reasoning of deformable objects is challenging.

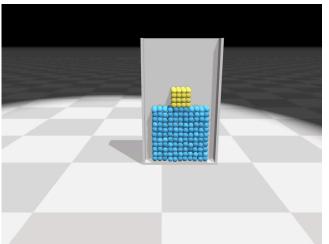


Physical reasoning of deformable objects is challenging.

Particle-based Representation General & Flexible







Physical reasoning of deformable objects is challenging.

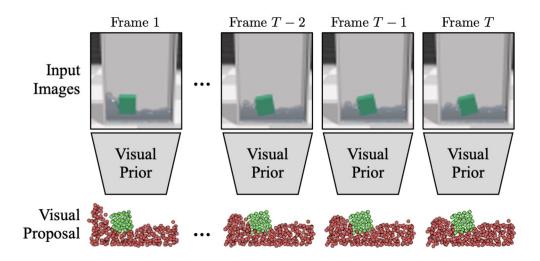
Particle-based Representation General & Flexible

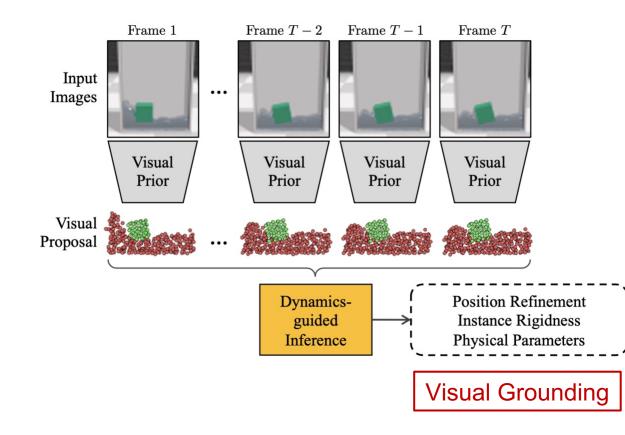
We propose a model that jointly

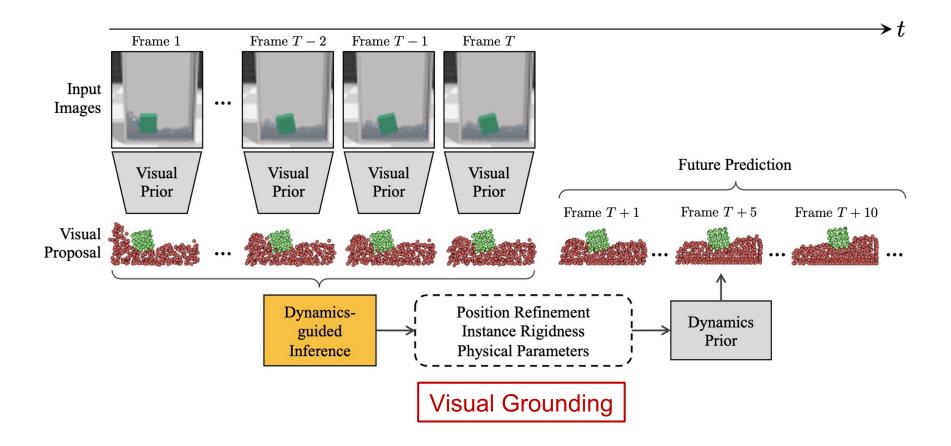
- Estimates the physical properties
  Defines the particle leasting
- (2) Refines the particle locations

using

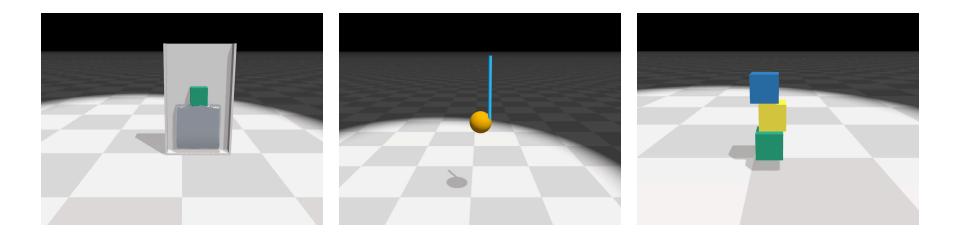
- (1) a learned visual prior
- (2) a learned dynamics prior







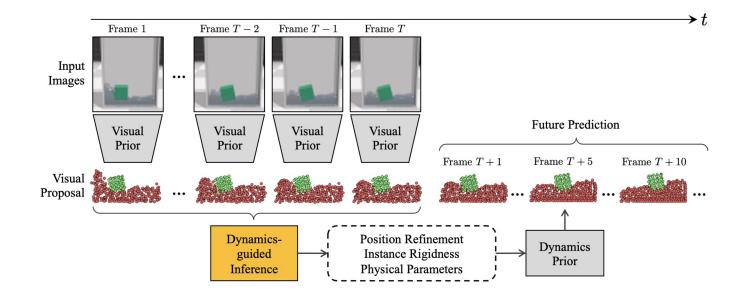
We evaluate our model in environments involving interactions between rigid objects, elastic materials, and fluids.



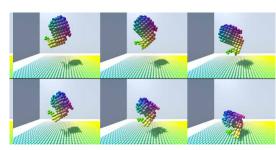
We evaluate our model in environments involving interactions between rigid objects, elastic materials, and fluids.

Within a few observation steps, our model is able to

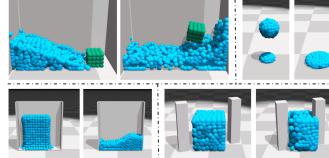
(1) refine the state estimation and reason about the physical properties(2) make predictions into the future.



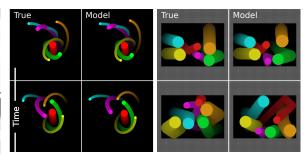
Learning-based particle dynamics



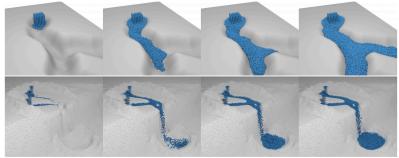
Mrowca, Zhuang, Wang, Haber, Fei-Fei, Tenenbaum, Yamins. NeurIPS'18



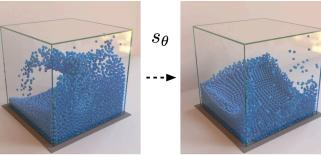
Li, Wu, Tedrake, Tenenbaum, Torralba. ICLR'19



Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu. NeurIPS'16

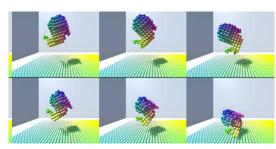


Ummenhofer, Prantl, Thuerey, Koltun. ICLR'20



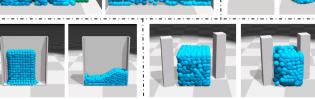
Sanchez-Gonzalez, Godwin, Pfaff, Ying, Leskovec, Battaglia. ICML'20

Learning-based particle dynamics

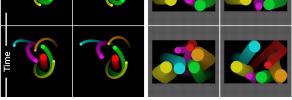


Mrowca, Zhuang, Wang, Haber, Fei-Fei, Tenenbaum, Yamins. NeurIPS'18

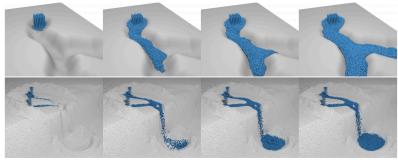
Questions remains: (1) How well they handle visual inputs? (2) How to adapt to scenarios of unknown physical parameters?



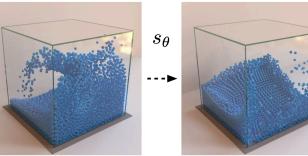
Li, Wu, Tedrake, Tenenbaum, Torralba. ICLR'19



Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu. NeurIPS'16

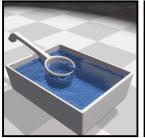


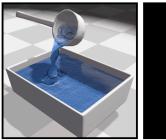
Ummenhofer, Prantl, Thuerey, Koltun. ICLR'20



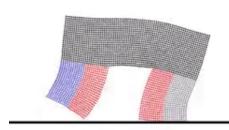
Sanchez-Gonzalez, Godwin, Pfaff, Ying, Leskovec, Battaglia. ICML'20

Differentiating through physics-based simulators





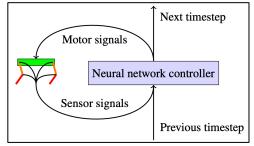
Schenck, Fox. CoRL'18



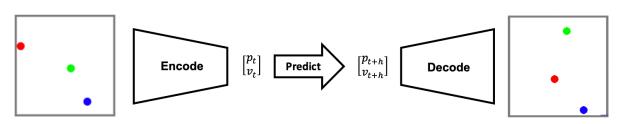
Hu, Liu, Spielberg, Tenenbaum, Freeman, Wu, Rus, Matusik. ICRA'19



Liang, Lin, Koltun. NeurIPS'19

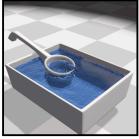


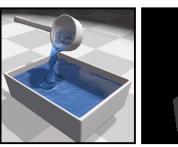
Degrave, Hermans, Dambre, Wyffels. Frontiers in Neurorobotics 2019



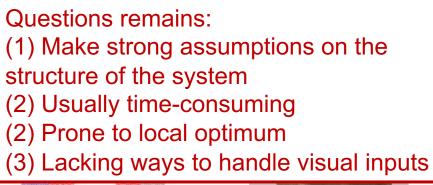
Belbute-Peres, Smith, Allen, Tenenbaum, Kolter. NeurIPS'18

Differentiating through physics-based simu





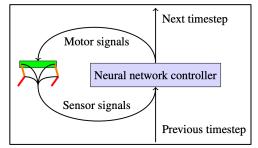
Schenck, Fox. CoRL'18



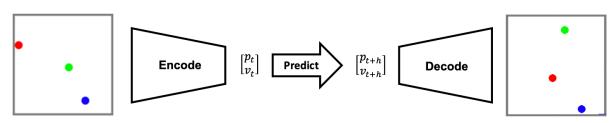
Hu, Liu, Spielberg, Tenenbaum, Freeman, Wu, Rus, Matusik. ICRA'19



Liang, Lin, Koltun. NeurIPS'19



Degrave, Hermans, Dambre, Wyffels. Frontiers in Neurorobotics 2019



Belbute-Peres, Smith, Allen, Tenenbaum, Kolter. NeurIPS'18

#### Our Work

We proposed Visually Grounded Physics Learner (VGPL) to

- (1) bridge the perception gap,
- (2) enable physical reasoning from visual perception, and

(3) perform dynamics-guided inference to directly predict the optimization results,

which allows quick adaptation to environments with unknown physical properties.

Consider a system that contains M objects and N particles.

Consider a system that contains M objects and N particles.

$$O = \{o^t\}_{t=1}^T$$
: Visual observ.

Consider a system that contains M objects and N particles. Visual prior  $f_V$ 

$$(\hat{X}',\hat{G}) = f_V(O)$$

 $O = \{o^t\}_{t=1}^T$ : Visual observ.  $\hat{X}'$ : Particle position  $\hat{G}$ : Instance grouping

Consider a system that contains M objects and N particles.

Visual prior  $f_V$  Dynamics prior  $f_D$ 

 $(\hat{X}', \hat{G}) = f_V(O)$  $\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, , )$   $O = \{o^t\}_{t=1}^T$ : Visual observ.  $\hat{X}'$ : Particle position  $\hat{G}$ : Instance grouping

Consider a system that contains M objects and N particles.

Visual prior  $f_V$  Dynamics prior  $f_D$ 

 $(\hat{X}', \hat{G}) = f_V(O)$  $\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \dots, \hat{Q})$ 

 $O = \{o^t\}_{t=1}^T$ : Visual observ.  $\hat{X}'$ : Particle position  $\hat{G}$ : Instance grouping  $\hat{Q}$ : Rigidness of each instance

Consider a system that contains M objects and N particles.

Visual prior  $f_V$  Dynamics prior  $f_D$ 

 $(\hat{X}', \hat{G}) = f_V(O)$  $\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \hat{P}, \hat{Q})$ 

 $O = \{o^t\}_{t=1}^T : \text{Visual observ.}$  $\hat{X}': \text{ Particle position}$  $\hat{G} : \text{ Instance grouping}$  $\hat{Q} : \text{ Rigidness of each instance}$  $\hat{P} : \text{ Physical parameters}$ 

Consider a system that contains M objects and N particles.

Visual prior  $f_V$  Dynamics prior  $f_D$  Inference module  $f_I$ 

$$(\hat{X}', \hat{G}) = f_V(O)$$
$$\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \hat{P}, \hat{Q})$$
$$(\hat{P}, \hat{Q}, \qquad) = f_I(\hat{X}', \hat{G})$$

 $O = \{o^t\}_{t=1}^T : \text{Visual observ.}$  $\hat{X}': \text{Particle position}$  $\hat{G} : \text{Instance grouping}$  $\hat{Q} : \text{Rigidness of each instance}$  $\hat{P} : \text{Physical parameters}$ 

Consider a system that contains M objects and N particles.

Visual prior  $f_V$  Dynamics prior  $f_D$  Inference module  $f_I$ 

$$(\hat{X}', \hat{G}) = f_V(O)$$
$$\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \hat{P}, \hat{Q})$$
$$(\hat{P}, \hat{Q}, \Delta \hat{X}) = f_I(\hat{X}', \hat{G})$$
$$\hat{X} = \hat{X}' + \Delta \hat{X}$$

 $O = \{o^t\}_{t=1}^T : \text{Visual observ.}$  $\hat{X}': \text{ Particle position}$  $\hat{G} : \text{ Instance grouping}$  $\hat{Q} : \text{ Rigidness of each instance}$  $\hat{P} : \text{ Physical parameters}$  $\Delta \hat{X} : \text{ Position refinement}$ 

Consider a system that contains M objects and N particles.

Visual prior  $f_V$  Dynamics prior  $f_D$  Inference module  $f_I$ 

$$(\hat{X}', \hat{G}) = f_V(O)$$
$$\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \hat{P}, \hat{Q})$$
$$(\hat{P}, \hat{Q}, \Delta \hat{X}) = f_I(\hat{X}', \hat{G})$$
$$\hat{X} = \hat{X}' + \Delta \hat{X}$$

**Objective function** 

$$(\hat{P}^*, \hat{Q}^*, \Delta \hat{X}^*) = \underset{\hat{P}, \hat{Q}, \Delta \hat{X}}{\arg \min} \|\hat{X}^{T+1} - X^{T+1}\|$$

 $O = \{o^t\}_{t=1}^T : \text{Visual observ.}$   $\hat{X}': \text{ Particle position}$   $\hat{G} : \text{ Instance grouping}$   $\hat{Q} : \text{ Rigidness of each instance}$   $\hat{P} : \text{ Physical parameters}$   $\Delta \hat{X} : \text{ Position refinement}$ 

## Visual Prior $f_V$

$$(\hat{X}',\hat{G}) = f_V(O)$$

Visual observations :  $O = \{o^t\}_{t=1}^T$ 

#### Visual Prior $f_V$

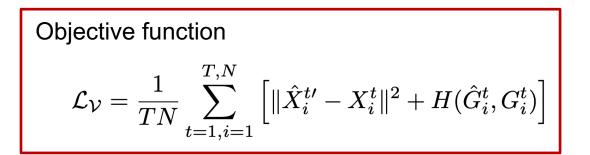
 $(\hat{X}',\hat{G}) = f_V(O)$ 

Visual observations :  $O = \{o^t\}_{t=1}^T$ Particle locations :  $\hat{X}' = \{(x_i^{t\prime}, y_i^{t\prime}, z_i^{t\prime})\}_{i=1,t=1}^{N,T}$ Instance grouping :  $\hat{G} = \{G_i^t\}_{i=1,t=1}^{N,T}$ 

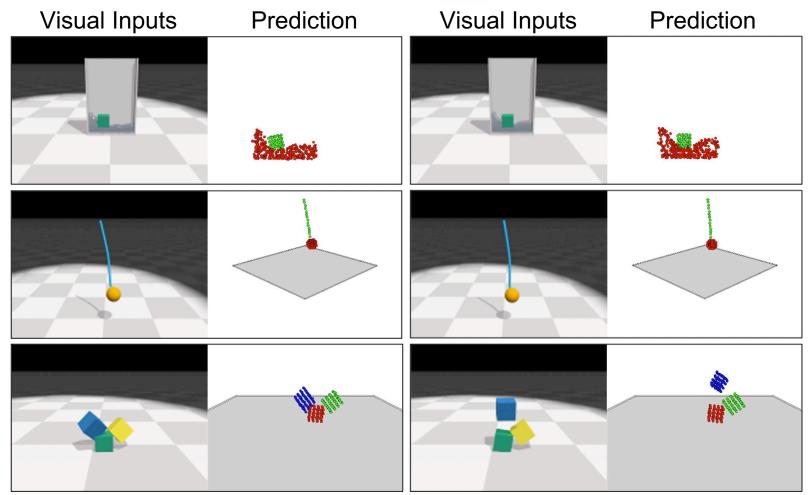
## Visual Prior $f_V$

 $(\hat{X}',\hat{G}) = f_V(O)$ 

Visual observations :  $O = \{o^t\}_{t=1}^T$ Particle locations :  $\hat{X}' = \{(x_i^{t\prime}, y_i^{t\prime}, z_i^{t\prime})\}_{i=1,t=1}^{N,T}$ Instance grouping :  $\hat{G} = \{G_i^t\}_{i=1,t=1}^{N,T}$ 



## Results of the Visual Prior $f_V$



## Dynamics Prior $f_D$

$$\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, , ).$$

- $\hat{X}$ : Particle position
- $\hat{G}$  : Instance grouping

# Dynamics Prior $f_D$

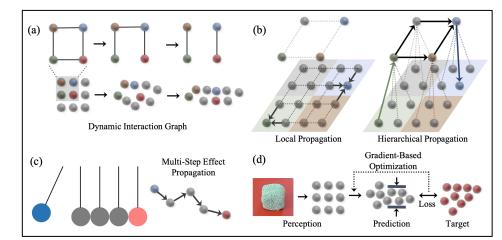
$$\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \hat{P}, \hat{Q}).$$

- $\hat{X}$ : Particle position
- $\hat{G}$  : Instance grouping
- $\hat{Q}$ : Rigidness of each instance
- $\hat{P}$ : Physical parameters

# Dynamics Prior $f_D$

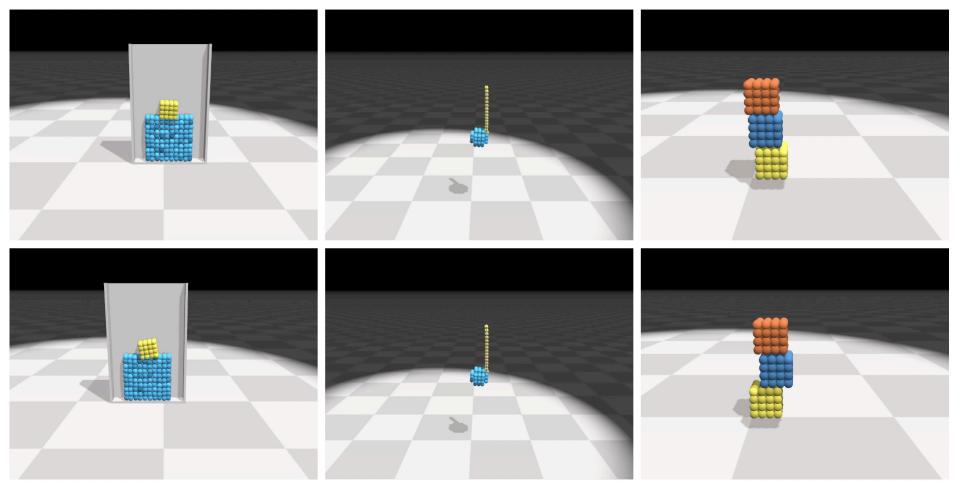
$$\hat{X}^{T+1} = f_D(\hat{X}, \hat{G}, \hat{P}, \hat{Q}).$$

- $\hat{X}$ : Particle position
- $\hat{G}$  : Instance grouping
- $\hat{Q}$ : Rigidness of each instance
- $\hat{P}$ : Physical parameters



Li, Wu, Tedrake, Tenenbaum, Torralba, "Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids," ICLR'19

# Results of the Dynamics Prior $f_D$



#### **Dynamics-Guided Inference**

# **Dynamics-Guided Inference**

- $\hat{Q}$  : Rigidness of each instance
- $\hat{P}$ : Physical parameters

# **Dynamics-Guided Inference**

- $\hat{Q}$  : Rigidness of each instance
- $\hat{P}$ : Physical parameters
- $\hat{X}'$ : Particle position

$$(\hat{P}, \hat{Q}, \dots) = f_I(\hat{X}', \hat{G})$$

 $\hat{G}$ : Instance grouping

# **Dynamics-Guided Inference**

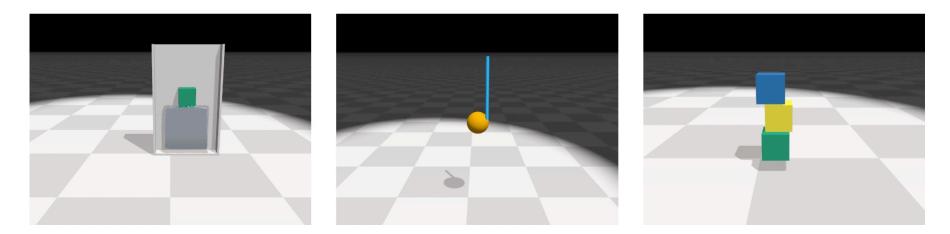
- $\hat{Q}$  : Rigidness of each instance
- $\hat{P}$ : Physical parameters
- $\hat{X}'$ : Particle position
- $\hat{G}$  : Instance grouping
- $\Delta \hat{X}$ : Position refinement

 $(\hat{P}, \hat{Q}, \Delta \hat{X}) = f_I(\hat{X}', \hat{G})$ 

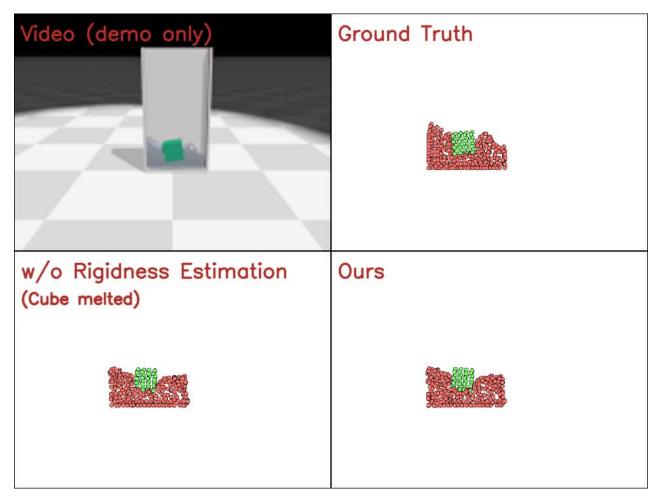
## Results

We will mainly investigate how accurate the following estimations are and whether they help with future prediction:

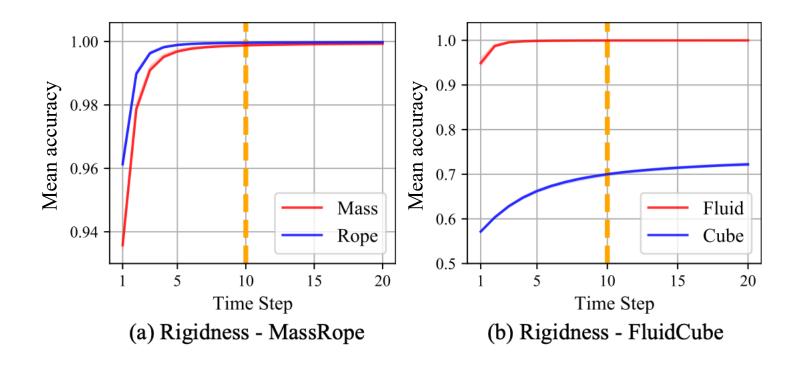
- (1)  $\hat{Q}$  : Rigidness estimation
- (2)  $\hat{P}$ : Parameter estimation
- (3)  $\Delta \hat{X}$  : Position refinement



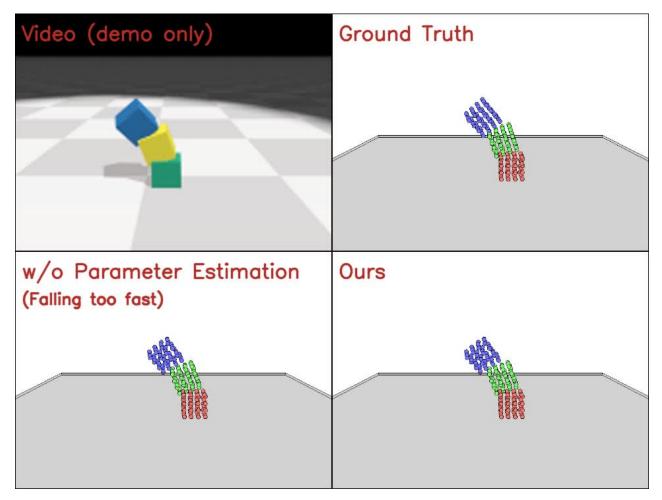
### Qualitative results on Rigidness Estimation



#### Quantitative results on Rigidness Estimation



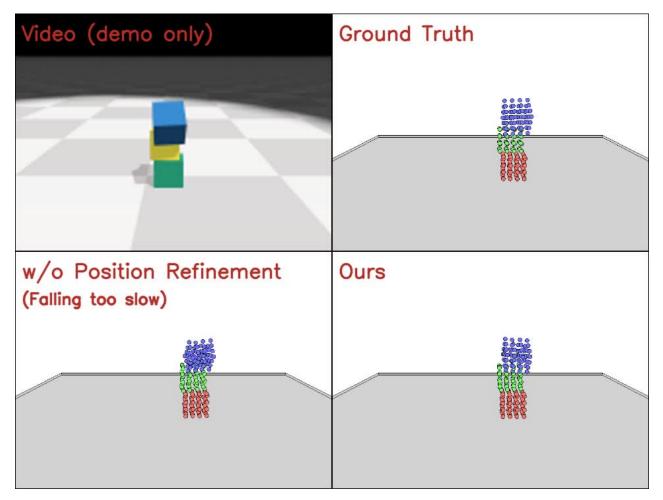
### Qualitative results on Parameter Estimation



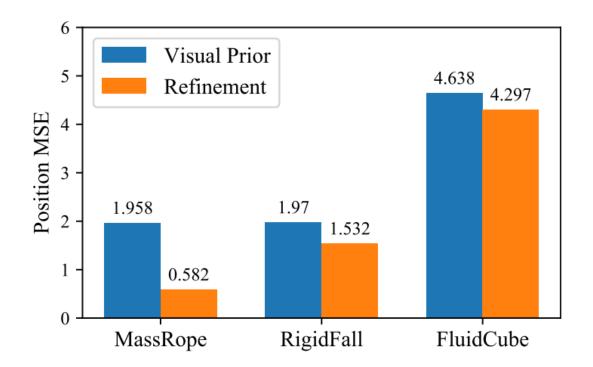
### Quantitative results on Parameter Estimation

| Methods            | MassRope                   | RigidFall  | FluidCube                    |  |  |
|--------------------|----------------------------|------------|------------------------------|--|--|
| Ours w/o Rigidness | 24.5% (15.1)<br>3.4% (2.2) |            | 28.6% (15.0)<br>22.2% (14.7) |  |  |
| VGPL (ours)        | 2.9% (1.3)                 | 3.7% (2.7) | 17.5% (13.6)                 |  |  |

### Qualitative results on **Position Refinement**



### Quantitative results on **Position Refinement**



### Quantitative results on Future Prediction

| Methods         | FluidCube |       |        | RigidFall |       |       | MassRope |        |            |       |        |
|-----------------|-----------|-------|--------|-----------|-------|-------|----------|--------|------------|-------|--------|
|                 | T+1       | T+5   | T + 10 | T+20      | T+1   | T+5   | T + 10   | T + 20 | $\mid T+1$ | T+5   | T + 10 |
| w/o Rigidness   | 3.864     | 5.100 | 7.631  | 13.62     | 2.283 | 10.68 | 43.93    | 198.1  | 0.898      | 4.849 | 16.40  |
| w/o Refinement  | 4.530     | 6.349 | 8.584  | 10.50     | 2.640 | 6.720 | 16.71    | 57.10  | 2.298      | 3.628 | 7.493  |
| w/o Param. Est. | 3.894     | 5.363 | 7.557  | 10.19     | 2.110 | 6.229 | 16.04    | 51.91  | 0.845      | 4.612 | 24.48  |
| VGPL (ours)     | 3.887     | 5.038 | 6.531  | 7.998     | 2.112 | 6.190 | 15.73    | 50.78  | 0.807      | 2.724 | 7.338  |

### In summary

#### We proposed Visually Grounded Physics Learner (VGPL) to

(1) simultaneously reason about physics and make future predictions based on visual and dynamics priors.

### In summary

#### We proposed Visually Grounded Physics Learner (VGPL) to

(1) simultaneously reason about physics and make future predictions based on visual and dynamics priors.

(2) We employ a particle-based representation to handle rigid bodies, deformable objects, and fluids.

### In summary

#### We proposed Visually Grounded Physics Learner (VGPL) to

- (1) simultaneously reason about physics and make future predictions based on visual and dynamics priors.
- (2) We employ a particle-based representation to handle rigid bodies, deformable objects, and fluids.
- (3) Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.

# Thank you for watching!