
One Policy to Control Them All:

Shared Modular Policies for Agent-Agnostic Control
Wenlong Huang
UC Berkeley

Igor Mordatch
Google

Deepak Pathak
FAIR, CMU



Deep Learning Success

• Effective in learning from unstructured data
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Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

a seemingly minor change, RoIAlign has a large impact: it
improves mask accuracy by relative 10% to 50%, showing
bigger gains under stricter localization metrics. Second, we
found it essential to decouple mask and class prediction: we
predict a binary mask for each class independently, without
competition among classes, and rely on the network’s RoI
classification branch to predict the category. In contrast,
FCNs usually perform per-pixel multi-class categorization,
which couples segmentation and classification, and based
on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all
previous state-of-the-art single-model results on the COCO
instance segmentation task [28], including the heavily-
engineered entries from the 2016 competition winner. As
a by-product, our method also excels on the COCO object
detection task. In ablation experiments, we evaluate multi-
ple basic instantiations, which allows us to demonstrate its
robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,
and training on COCO takes one to two days on a single
8-GPU machine. We believe the fast train and test speeds,
together with the framework’s flexibility and accuracy, will
benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework
via the task of human pose estimation on the COCO key-
point dataset [28]. By viewing each keypoint as a one-hot
binary mask, with minimal modification Mask R-CNN can
be applied to detect instance-specific poses. Without tricks,
Mask R-CNN surpasses the winner of the 2016 COCO key-
point competition, and at the same time runs at 5 fps. Mask
R-CNN, therefore, can be seen more broadly as a flexible
framework for instance-level recognition and can be readily
extended to more complex tasks.

We will release code to facilitate future research.

2. Related Work
R-CNN: The Region-based CNN (R-CNN) approach [13]
to bounding-box object detection is to attend to a manage-
able number of candidate object regions [38, 20] and evalu-
ate convolutional networks [25, 24] independently on each
RoI. R-CNN was extended [18, 12] to allow attending to
RoIs on feature maps using RoIPool, leading to fast speed
and better accuracy. Faster R-CNN [34] advanced this
stream by learning the attention mechanism with a Region
Proposal Network (RPN). Faster R-CNN is flexible and ro-
bust to many follow-up improvements (e.g., [35, 27, 21]),
and is the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-
CNN, many approaches to instance segmentation are based
on segment proposals. Earlier methods [13, 15, 16, 9] re-
sorted to bottom-up segments [38, 2]. DeepMask [32] and
following works [33, 8] learn to propose segment candi-
dates, which are then classified by Fast R-CNN. In these
methods, segmentation precedes recognition, which is slow
and less accurate. Likewise, Dai et al. [10] proposed a com-
plex multiple-stage cascade that predicts segment proposals
from bounding-box proposals, followed by classification.
Instead, our method is based on parallel prediction of masks
and class labels, which is simpler and more flexible.

Most recently, Li et al. [26] combined the segment pro-
posal system in [8] and object detection system in [11] for
“fully convolutional instance segmentation” (FCIS). The
common idea in [8, 11, 26] is to predict a set of position-
sensitive output channels fully convolutionally. These
channels simultaneously address object classes, boxes, and
masks, making the system fast. But FCIS exhibits system-
atic errors on overlapping instances and creates spurious
edges (Figure 5), showing that it is challenged by the fun-
damental difficulties of segmenting instances.

2

For any given problem:
1. Download a pretrained model

(ResNet, BERT etc.)
2. Label some new data for task
3. Finetune the last layer

4. Declare victory!



Can we translate this pretraining success to robotics?



Challenging because	every	robot	is	different!

…. etc.



Deep	Reinforcement	Learning	for	Robot	Control

How	well	does	it	generalize?

Kalasnikov et.al. 2018

A	separate	policy	is	trained	
for	each	robotics	setup.



- Lots	of	tuning	needed	even	for	one	robotic	agent

- Yet,	it	doesn’t	generalize!

Reinforcement	Learning	for	Robot	Control

What	about	training	on	multiple	robots?



Prior Attempts

[Chen	et.al.	NeurIPS	2018] [Wang	et.al.	ICLR	2018]

Same topology!



How to train same policy for these different shapes?

Walker Humanoid

Same Policy?



This work

• One policy for 

several agents

• Zero-shot generalize 

to new agents!

Very challenging…

• Different number of input limbs and output actions

• Different gaits (behavior) needed for different agent, 

e.g., walking, hopping etc.

Why should it be possible?



Shared Locomotion patterns in Biology

[slide from Robert Full]



Precocial Animals -- horses, giraffes, zebras etc. 
- “foals can walk as fast as their parents within hours”

1-2	hrs after	birth

4	days	after	birth



Teaser: One policy to control them all



How	do	we	train	a	single	policy	for	all?



INSPIRATION

Train the controller for each 

motor/limb and share it across all 

the motors/limbs. 

Modularity at	the	level	of	software	and	hardware!
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[slides adapted from Pathak et al., NeurIPS 2019]
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𝜋!
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How to train the same policy for different agents?

𝜋!
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𝜋!

Same network is applied at each limb/motor.

Hopper Walker

[slides adapted from Pathak et al., NeurIPS 2019]



Does it just work like that?

𝜋!
𝜋!

𝜋!

𝜋!
𝜋!

𝜋!

𝜋!

No global coordination!



Network as reusable and communicating LEGO Blocks
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[slides adapted from Pathak et al., NeurIPS 2019]



𝜋!

𝜋!

𝜋!

𝜋!

shared
policy

output

input

message
output �⃗�"

message
input �⃗�

𝜋!

shared
policy

output

input

message
output �⃗�"

message
input �⃗�

𝜋!

shared
policy

output

input

message
output �⃗�"

message
input �⃗�

𝜋!

shared
policy

output

input

message
output �⃗�"

message
input �⃗�

Network as reusable and communicating LEGO Blocks

[slides adapted from Pathak et al., NeurIPS 2019]



Network as reusable and communicating LEGO Blocks

[slides adapted from Pathak et al., NeurIPS 2019]
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𝜋!
and
paste

copy

Trained Robot New Robot at Test Time
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Message Passing Scheme

One-way: Leaves to root or root to leaves?

or



Limitation of One-Way Message Passing
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Gait
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Centralized Control via Both-wayMessage Passing



Shared 
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Shared Modular Policies with Both-wayMessage Passing
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Shared Modular Policies with Both-wayMessage Passing
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Results



One single controller for different variants of 2D humanoid



One single controller for different variants of walker and hopper



One single controller for different variants of cheetah



Zero-Shot Generalization to Unseen Agents!



Zero-Shot Generalization: held-out, similar distribution



Zero-shot testing on out of distribution



Zero-Shot Generalization – very different agents!
Doesn’t	excel,	but	still	tries	to	maintain	balance	and	not	fall!



Zero-Shot Generalization – add objects on new agents

No	objects	at	training time!

Doesn’t	excel	in	moving	forward,	but	still	tries	
to	maintain	balance	and	posture



Zero-Shot Generalization: Failures… 

Hard	because	muscle	strength	is	not	enough	to	
carry	the	weight	of	these	limbs.



Does	message coordination	really	emerge?



Biological Central Pattern Generators



Does	message coordination	really	emerge?

variation	across	an	episode
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Visualization	of	out-going	message	from	root	node
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Summary: Shared Modular Policies

1.	Training Single Policy on Diverse Robots

• Have	modularity	at	the	level	of	actuators instead

• Emergent centralized control by both-waymessage passing

2.	Toward	General	Pretrained	Controllers

• State-of-the-art training performance onmany diverse
robots by a single policy

• Zero-shot generalization to unseen robot shapes

Super-early	but	promising	results…	

…still	a	long	way	to	go!



Thank	you!


