The continuous categorical: a novel simplex-valued exponential family

Elliott Gordon-Rodríguez, Gabriel Loaiza-Ganem, John P. Cunningham

https://arxiv.org/abs/2002.08563

ICML 2020

COLUMBIA UNIVERSITY layer 6

Motivation: compositional data

Definition (simplex): $\mathbb{S}^{K} := \{ \mathbf{x} \in \mathbb{R}_{+}^{K} : \sum_{i=1}^{K} x_{i} = 1 \}$

COLUMBIA UNIVERSITY layer6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family.

Motivation: compositional data

Examples:

- Geology
- Chemistry
- Microbiology
- Genetics
- Economics
- Politics

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Machine learning

laver6

The continuous categorical: a novel simplex-valued exponential family.

Subsampling Fully connected

Definition: $\mathbf{x} \sim Dirichlet(\alpha)$ if $\mathbf{x} \in \mathbb{S}^{K}$ with density:

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

layer6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family.

Definition: $\mathbf{x} \sim Dirichlet(\alpha)$ if $\mathbf{x} \in \mathbb{S}^{K}$ with density:

$$p(\mathbf{x}; \boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^{K} x_i^{\alpha_i - 1}.$$
 (1)

Extrema. log p(x; α) → ±∞ as x_j → 0.
 ∴ log-likelihood is undefined in the presence of zeros.

妃 Columbia University

Definition: $\mathbf{x} \sim Dirichlet(\alpha)$ if $\mathbf{x} \in \mathbb{S}^{K}$ with density:

$$p(\mathbf{x}; \alpha) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i - 1}.$$
 (1)

- Extrema. log p(x; α) → ±∞ as x_j → 0.
 ∴ log-likelihood is undefined in the presence of zeros.
- Bias. Re-write the density in canonical form
 p(x; α) = h(x) exp (∑_{i=1}^K α_i log x_i − A(α)).

 By theory of exponential families, MLE is unbiased for E log x_j.
 ∴ MLE is biased for the mean μ_j = Ex_j.

 layer 6
 Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020).
 4 / 1

 The continuous categorical: a novel simplex-valued exponential family.
 4 / 1

Definition: $\mathbf{x} \sim Dirichlet(\alpha)$ if $\mathbf{x} \in \mathbb{S}^{K}$ with density:

$$p(\mathbf{x}; \boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^{K} x_i^{\alpha_i - 1}.$$
 (1)

- Extrema. log p(x; α) → ±∞ as x_j → 0.
 ∴ log-likelihood is undefined in the presence of zeros.
- Bias. Re-write the density in canonical form
 p(**x**; α) = *h*(**x**) exp (∑_{i=1}^K α_i log x_i − A(α)).
 By theory of exponential families, MLE is unbiased for E log x_j.
 ∴ MLE is biased for the mean μ_j = Ex_j.
- Flexibility. If x₀ ∈ S^K is a single datapoint, then log p(x₀; α) → ∞ as α → ∞ along α = kx₀.
 ∴ the Dirichlet log-likelihood is ill-behaved under flexible predictive models (e.g. GLMs, neural networks).

Definition: $\mathbf{x} \in \mathbb{S}^{K}$ follows a *continuous categorical* (*CC*) distribution with parameter $\lambda \in \mathbb{S}^{K}$ if:

$$\mathbf{x} \sim \mathcal{CC}(\boldsymbol{\lambda}) \iff p(\mathbf{x}; \boldsymbol{\lambda}) \propto \prod_{i=1}^{K} \lambda_i^{\mathbf{x}_i}$$

Definition: $\mathbf{x} \in \mathbb{S}^{K}$ follows a *continuous categorical* (*CC*) distribution with parameter $\boldsymbol{\lambda} \in \mathbb{S}^{K}$ if:

$$\mathbf{x} \sim \mathcal{CC}(oldsymbol{\lambda}) \iff p(\mathbf{x};oldsymbol{\lambda}) \propto \prod_{i=1}^{K} \lambda_i^{x_i}$$

Extrema. log p(x; λ) is finite at the extrema of the simplex. ∴ log-likelihood is well-defined in the presence of zeros.

Definition: $\mathbf{x} \in \mathbb{S}^{K}$ follows a *continuous categorical* (*CC*) distribution with parameter $\boldsymbol{\lambda} \in \mathbb{S}^{K}$ if:

$$\mathbf{x} \sim \mathcal{CC}(oldsymbol{\lambda}) \iff p(\mathbf{x};oldsymbol{\lambda}) \propto \prod_{i=1}^{K} \lambda_i^{x_i}$$

Extrema. log p(x; λ) is finite at the extrema of the simplex. ∴ log-likelihood is well-defined in the presence of zeros.

Bias. Re-write the CC density in canonical form
 p(x; λ) ∝ exp (∑_{i=1}^K log(λ_i) · x_i).
 ∴ by theory of exponential families, MLE is unbiased for the mean μ_j = Ex_j.

Definition: $\mathbf{x} \in \mathbb{S}^{K}$ follows a *continuous categorical* (*CC*) distribution with parameter $\boldsymbol{\lambda} \in \mathbb{S}^{K}$ if:

$$\mathbf{x} \sim \mathcal{CC}(oldsymbol{\lambda}) \iff p(\mathbf{x};oldsymbol{\lambda}) \propto \prod_{i=1}^K \lambda_i^{\mathbf{x}_i}$$

Extrema. log p(x; λ) is finite at the extrema of the simplex. ∴ log-likelihood is well-defined in the presence of zeros.

- Bias. Re-write the CC density in canonical form
 p(**x**; λ) ∝ exp (∑^K_{i=1} log(λ_i) · x_i).
 ∴ by theory of exponential families, MLE is unbiased for the
 mean μ_i = Ex_i.
- **Flexibility.** The *CC* density is convex in **x**.

.:. cannot represent interior modes, cannot concentrate mass on interior points and log-likelihood does not diverge.

Definition: $\mathbf{x} \in \mathbb{S}^{K}$ follows a *continuous categorical* (*CC*) distribution with parameter $\boldsymbol{\lambda} \in \mathbb{S}^{K}$ if:

$$\mathbf{x} \sim \mathcal{CC}(oldsymbol{\lambda}) \iff p(\mathbf{x};oldsymbol{\lambda}) \propto \prod_{i=1}^K \lambda_i^{\mathbf{x}_i}$$

Where did this come from?

- A probabilistic cross-entropy loss for compositional data.
- Multivariate generalization of the continuous Bernoulli distribution (Loaiza-Ganem & Cunningham, NeurIPS 2019):
 x ~ CB(λ) ⇔ p(x|λ) ∝ λ^x(1 − λ)^{1−x}, for x ∈ [0, 1] = S¹.
- A continuous relaxation of the categorical distribution.
- Switching the role of the parameter and the argument in the Dirichlet density.
- Restricting independent exponential RVs to the simplex.

Normalizing constant

Theorem: Write $C(\lambda)$ for the normalizing constant of the $CC(\lambda)$ distribution, i.e.

$$\int_{\mathbb{S}^{K}} C(\boldsymbol{\lambda}) \prod_{i=1}^{K} \lambda_{i}^{x_{i}} d\mu(\mathbf{x}) = 1.$$
(2)

$$C(\boldsymbol{\lambda}) = \left((-1)^{K+1} \sum_{k=1}^{K} rac{\lambda_k}{\prod_{i \neq k} \log rac{\lambda_i}{\lambda_k}}
ight)^{-1},$$

COLUMBIA UNIVERSITY layer6 Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). 6/1 IN THE CITY OF NEW YORK The continuous categorical: a novel simplex-valued exponential family.

Normalizing constant

Theorem: Write $C(\lambda)$ for the normalizing constant of the $CC(\lambda)$ distribution, i.e.

$$\int_{\mathbb{S}^{K}} C(\boldsymbol{\lambda}) \prod_{i=1}^{K} \lambda_{i}^{x_{i}} d\mu(\mathbf{x}) = 1.$$
(2)

6/1

Then

$$C(oldsymbol{\lambda}) = \left((-1)^{K+1} \sum_{k=1}^{K} rac{\lambda_k}{\prod_{i
eq k} \log rac{\lambda_i}{\lambda_k}}
ight)^{-1},$$

Remark:

- Closed-form in terms of elementary functions only.
- Can compute moments, MGF, and more, directly from $C(\cdot)$.

Beta

Continuous Bernoulli

Dirichlet

Continuous Categorical

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK layer6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family.

$$x^{lpha-1}(1-x)^{eta-1} \qquad \qquad \lambda^x(1-\lambda)^{1-x}$$

layer6

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

$$\prod_{i=1}^{K} \lambda_i^{x_i}$$

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family.

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

laver6

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

laver6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). $$10\,/\,1$$ The continuous categorical: a novel simplex-valued exponential family.

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

 layer6
 Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020).
 11/1

 The continuous categorical: a novel simplex-valued exponential family.
 11/1

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

layer6

Beta	[0,1]-valued, Image data	СВ
Unstable Biased Flexible		Stable Unbiased Inflexible
Dirichlet	Simplex-valued, Compositional data	сс

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). 1 The continuous categorical: a novel simplex-valued exponential family.

Application: UK 2019 general election

Results map: the geography of the new parliament*

COLUMBIA UNIVERSITY

laver6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family.

Election data: results

 $\label{eq:Gordon-Rodriguez, E., Loaiza-Ganem, G., \& Cunningham, J. P. (2020). $$14/1$ The continuous categorical: a novel simplex-valued exponential family. $$$14/1$$

COLUMBIA UNIVERSITY

layer6

Election data: results

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

layer6

 $\label{eq:Gordon-Rodriguez, E., Loaiza-Ganem, G., \& Cunningham, J. P. (2020). $$14/1$ The continuous categorical: a novel simplex-valued exponential family. $$$14/1$$

Election data: results

COLUMBIA UNIVERSITY

layer6

Election data: optimizers

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

layer6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family. $15\,/\,1$

Election data: optimizers

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

layer6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). 15 The continuous categorical: a novel simplex-valued exponential family.

Election data: optimizers

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family. $15\,/\,1$

COLUMBIA UNIVERSITY

layer6

Model compression (knowledge distillation)

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).

arXiv:1503.02531 (2015).

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

layer6

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). 1 The continuous categorical: a novel simplex-valued exponential family.

Model compression (knowledge distillation)

Student network learns from (soft) outputs of teacher model, via (soft) cross-entropy loss \longrightarrow replace with CC log-likelihood.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).

COLUMBIA UNIVERSITY layer6 Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). 16 / 1 The continuous categorical: a novel simplex-valued exponential family.

Model compression: results on MNIST

Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). 17 / 1 The continuous categorical: a novel simplex-valued exponential family.

COLUMBIA UNIVERSITY

layer6

Conclusion

- Novel exponential family of distributions.
- Attractive mathematical properties.
- Outperforms the Dirichlet in regression models of compositional outcomes.