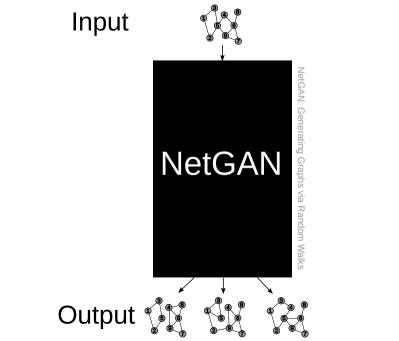
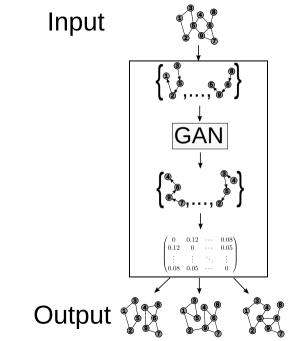
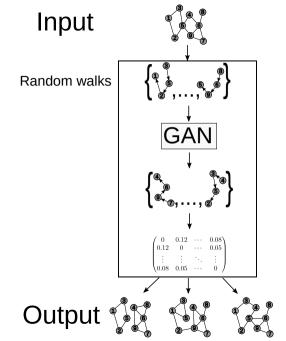
NetGAN without GAN: From Random Walks to Low-Rank Approximations

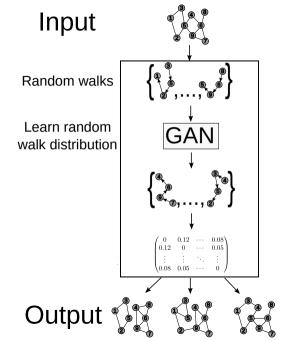
Luca Rendsburg, Holger Heidrich, Ulrike von Luxburg

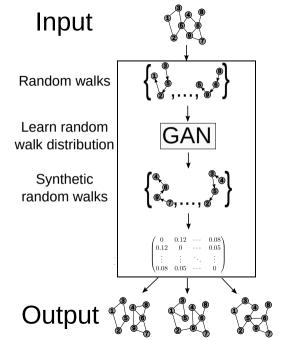
ICML 2020

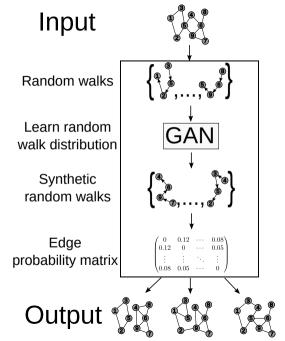












Conceptual analysis

Conceptual analysis

Inductive bias of NetGAN

Conceptual analysis

- Inductive bias of NetGAN
- Bypass sampling random walks

Conceptual analysis

- Inductive bias of NetGAN
- Bypass sampling random walks

Simplified version (no GAN, no sampling): "Cross-Entropy Low-rank Logits (CELL)"

Conceptual analysis

- Inductive bias of NetGAN
- Bypass sampling random walks

Simplified version (no GAN, no sampling): "Cross-Entropy Low-rank Logits (CELL)"

Higher transparency

Conceptual analysis

- Inductive bias of NetGAN
- Bypass sampling random walks

Simplified version (no GAN, no sampling): "Cross-Entropy Low-rank Logits (CELL)"

- Higher transparency
- Comparable generalization performance

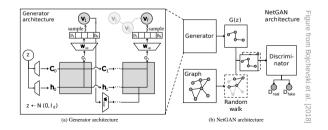
Conceptual analysis

- Inductive bias of NetGAN
- Bypass sampling random walks

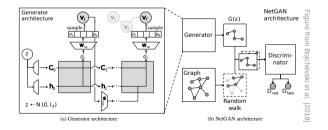
Simplified version (no GAN, no sampling): "Cross-Entropy Low-rank Logits (CELL)"

- Higher transparency
- Comparable generalization performance
- Huge speedup

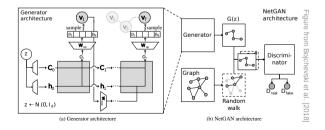
• Goal: learn random walk distribution



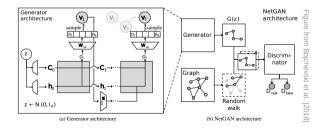
- Goal: learn random walk distribution
- Training set: unbiased random walks $\{(v_0^{(i)}, \ldots, v_T^{(i)})\}_i$ of length T over input graph



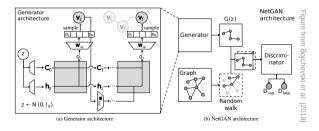
- Goal: learn random walk distribution
- Training set: unbiased random walks $\{(v_0^{(i)}, \ldots, v_T^{(i)})\}_i$ of length T over input graph
- Generator: generate sequences $\{(w_0^{(i)}, \ldots, w_T^{(i)})\}_i$ of "synthetic" random walks



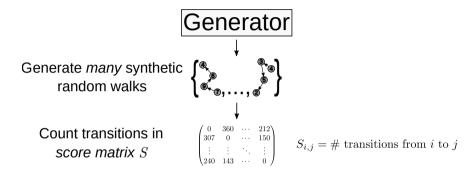
- Goal: learn random walk distribution
- Training set: unbiased random walks $\{(v_0^{(i)}, \ldots, v_T^{(i)})\}_i$ of length T over input graph
- Generator: generate sequences $\{(w_0^{(i)}, \ldots, w_T^{(i)})\}_i$ of "synthetic" random walks
- Discriminator: distinguish synthetic from real random walks

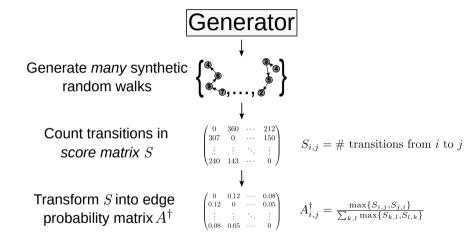


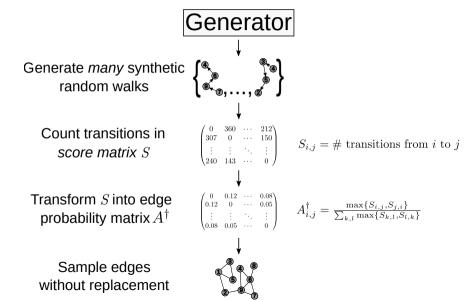
- Goal: learn random walk distribution
- Training set: unbiased random walks $\{(v_0^{(i)}, \ldots, v_T^{(i)})\}_i$ of length T over input graph
- Generator: generate sequences $\{(w_0^{(i)}, \ldots, w_T^{(i)})\}_i$ of "synthetic" random walks
- Discriminator: distinguish synthetic from real random walks
- Architecture: LSTMs with Wasserstein loss

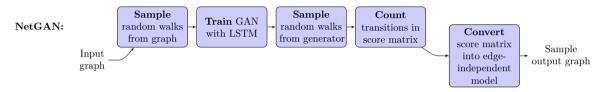


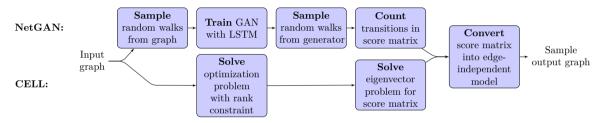
Generator

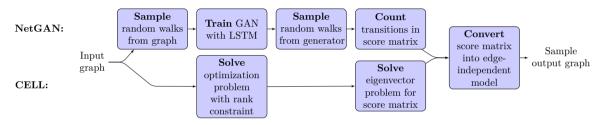




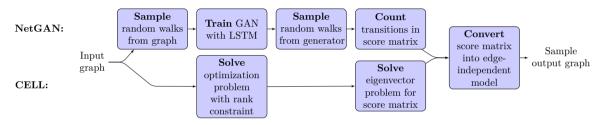




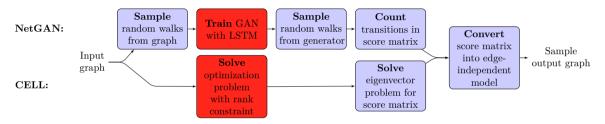




1. Replace GAN with rank-constrained optimization problem



- 1. Replace GAN with rank-constrained optimization problem
- 2. Bypass random walk sampling



- 1. Replace GAN with rank-constrained optimization problem
- 2. Bypass random walk sampling

What causes the generalization of NetGAN?

What causes the generalization of NetGAN?

The random walks?

What causes the generalization of NetGAN?

The random walks?

X Random walk distribution determines graph

What causes the generalization of NetGAN?

The random walks?

X Random walk distribution determines graph

The GAN?

What causes the generalization of NetGAN?

The random walks?

 $\pmb{\mathsf{X}}$ Random walk distribution determines graph

The GAN?

 $\pmb{\varkappa}$ Perfectly learning random walk distribution simply memorizes graph

What causes the generalization of NetGAN?

The random walks?

X Random walk distribution determines graph

The GAN?

✗ Perfectly learning random walk distribution simply memorizes graph

The LSTM?

What causes the generalization of NetGAN?

The random walks?

✗ Random walk distribution determines graph

The GAN?

 $\pmb{\varkappa}$ Perfectly learning random walk distribution simply memorizes graph

The LSTM?

 $\pmb{\varkappa}$ No long-term dependencies in random walks

Replacing the GAN (2)

What causes the generalization of NetGAN?

The random walks?

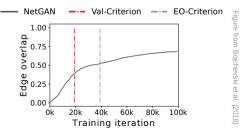
✗ Random walk distribution determines graph

The GAN?

 $\pmb{\varkappa}$ Perfectly learning random walk distribution simply memorizes graph

The LSTM?

✗ No long-term dependencies in random walks



Replacing the GAN (2)

What causes the generalization of NetGAN?

The random walks?

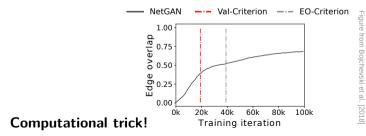
✗ Random walk distribution determines graph

The GAN?

 $\pmb{\varkappa}$ Perfectly learning random walk distribution simply memorizes graph

The LSTM?

✗ No long-term dependencies in random walks



Replacing the GAN (2)

What causes the generalization of NetGAN?

The random walks?

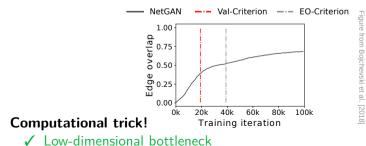
✗ Random walk distribution determines graph

The GAN?

 $\pmb{\varkappa}$ Perfectly learning random walk distribution simply memorizes graph

The LSTM?

✗ No long-term dependencies in random walks



Replacing the GAN (3)

• Number of nodes N, set of random walks \mathcal{R} , low rank H, row-wise softmax σ_{rows}

Replacing the GAN (3)

- Number of nodes N, set of random walks \mathcal{R} , low rank H, row-wise softmax σ_{rows}
- Generator learns random walk distribution by learning random walk transition matrix from parametric family

$$\mathcal{P} = \{\sigma_{\mathsf{rows}}(W) \in \mathbb{R}^{N \times N} : W \in \mathbb{R}^{N \times N}, \operatorname{rank}(W) \leq H\}.$$

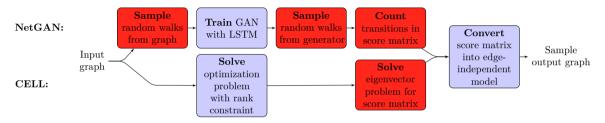
Replacing the GAN (3)

- Number of nodes N, set of random walks \mathcal{R} , low rank H, row-wise softmax σ_{rows}
- Generator learns random walk distribution by learning random walk transition matrix from parametric family

$$\mathcal{P} = \{\sigma_{\mathsf{rows}}(W) \in \mathbb{R}^{N \times N} : W \in \mathbb{R}^{N \times N}, \operatorname{rank}(W) \leqslant H\}.$$

Do this directly with maximum likelihood estimation

$$\begin{split} \min_{\substack{W \in \mathbb{R}^{N \times N} \\ \text{ s. t. }}} & -\sum_{(i,j) \in \mathcal{R}} \log \sigma_{\mathsf{rows}}(W)_{i,j} , \\ \text{ s. t. } & \operatorname{rank}(W) \leqslant H . \end{split}$$



- 1. Replace GAN with rank-constrained optimization problem
- 2. Bypass random walk sampling

▶ NetGAN samples *many* random walks from input graph & from generator

- ▶ NetGAN samples *many* random walks from input graph & from generator
- \blacktriangleright Example: On CORA-ML (2,810/ 7,981), sees every edge $\sim 14,000$ times on average

- ▶ NetGAN samples *many* random walks from input graph & from generator
- Example: On CORA-ML (2,810/ 7,981), sees every edge $\sim 14,000$ times on average
- Count random walk transitions in *score matrix* $S \in \mathbb{R}^{N \times N}$

- ▶ NetGAN samples *many* random walks from input graph & from generator
- \blacktriangleright Example: On CORA-ML (2,810/ 7,981), sees every edge $\sim 14,000$ times on average
- Count random walk transitions in *score matrix* $S \in \mathbb{R}^{N \times N}$
- \blacktriangleright Length of random walk T, amount of random walks n. Normalized score matrix converges

$$\frac{S}{nT} \xrightarrow[n, T \to \infty]{a.s.} \operatorname{diag}(\pi) P,$$

where P is corresponding random walk transition matrix and π its stationary distribution.

- ▶ NetGAN samples *many* random walks from input graph & from generator
- \blacktriangleright Example: On CORA-ML (2,810/ 7,981), sees every edge $\sim 14,000$ times on average
- Count random walk transitions in *score matrix* $S \in \mathbb{R}^{N \times N}$
- \blacktriangleright Length of random walk T, amount of random walks n. Normalized score matrix converges

$$\frac{S}{nT} \xrightarrow[n, T \to \infty]{a.s.} \operatorname{diag}(\pi) P,$$

where P is corresponding random walk transition matrix and π its stationary distribution.

Replace normalized score matrix with its limit

1. Learning step (with adjacency matrix A)

$$\min_{W \in \mathbb{R}^{N \times N}} \sum_{(i,j) \in \mathcal{R}} \log \sigma_{\mathsf{rows}}(W)_{i,j} ,$$

s.t. $\operatorname{rank}(W) \leqslant H$ \rightarrow
$$\min_{W \in \mathbb{R}^{N \times N}} \sum_{k,l} A_{k,l} \log \sigma_{\mathsf{rows}}(W)_{k,l} ,$$

s.t. $\operatorname{rank}(W) \leqslant H$

1. Learning step (with adjacency matrix A)

$$\min_{W \in \mathbb{R}^{N \times N}} -\sum_{(i,j) \in \mathcal{R}} \log \sigma_{\mathsf{rows}}(W)_{i,j} ,$$

s.t. $\operatorname{rank}(W) \leqslant H$ \rightarrow
$$\min_{W \in \mathbb{R}^{N \times N}} -\sum_{k,l} A_{k,l} \log \sigma_{\mathsf{rows}}(W)_{k,l} ,$$

s.t. $\operatorname{rank}(W) \leqslant H$

2. Reconstruction step (with synthetic transition matrix P^*)

Compute S by counting transitions of synthetic random walks

$$\rightarrow S \coloneqq \operatorname{diag}(\pi^*) P^*$$

1. Learning step (with adjacency matrix A)

$$\min_{W \in \mathbb{R}^{N \times N}} -\sum_{(i,j) \in \mathcal{R}} \log \sigma_{\mathsf{rows}}(W)_{i,j} ,$$

s.t. $\operatorname{rank}(W) \leqslant H$ \rightarrow
$$\min_{W \in \mathbb{R}^{N \times N}} -\sum_{k,l} A_{k,l} \log \sigma_{\mathsf{rows}}(W)_{k,l} ,$$

s.t. $\operatorname{rank}(W) \leqslant H$

2. Reconstruction step (with synthetic transition matrix P^*)

Compute S by counting transitions of synthetic random walks

$$\rightarrow S := \operatorname{diag}(\pi^*) P^*$$

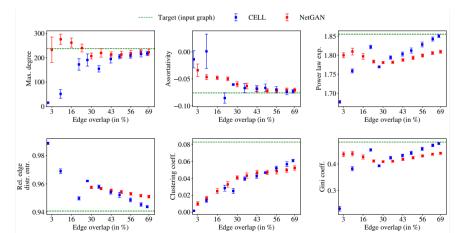
Bypass sampling in both steps

Experiments (1) Does CELL generate the same type of graphs as NetGAN?

Experiments (1) Does CELL generate the same type of graphs as NetGAN? Yes!

Experiments (1) Does CELL generate the same type of graphs as NetGAN? Yes!

Graph: CORA-ML citation network (2,810/ 7,981)



12

Experiments (2)

CELL is significantly faster

Experiments (2)

CELL is significantly faster

Table: Training time (in seconds) for NetGAN and CELL on a variety of networks. NetGAN requires a GPU, while CELL runs on a CPU.

DATA SET (NODES/ EDGES)	NetGAN	CELL
CORA-ML (2,810/ 7,981)	7,478	21
CITESEER $(2,110/3,668)$	$4,\!654$	10
PolBlogs $(1,222/16,779)$	$55,\!276$	15
RT-GOP $(4,687/5,529)$	$14,\!800$	23
WEB-EDU (3,031/ 6,474)	$11,\!000$	16

NetGAN

NetGAN

Successful graph generative model

NetGAN

- Successful graph generative model
- Complicated and not transparent

NetGAN

- Successful graph generative model
- Complicated and not transparent

NetGAN

- Successful graph generative model
- Complicated and not transparent

Our contribution: conceptual analysis

Uncover inductive bias: low-rank assumption

NetGAN

- Successful graph generative model
- Complicated and not transparent

- Uncover inductive bias: low-rank assumption
- Starting point to better understand inductive bias

NetGAN

- Successful graph generative model
- Complicated and not transparent

- Uncover inductive bias: low-rank assumption
- Starting point to better understand inductive bias
- Bypass sampling by using a limit argument

NetGAN

- Successful graph generative model
- Complicated and not transparent

- Uncover inductive bias: low-rank assumption
- Starting point to better understand inductive bias
- Bypass sampling by using a limit argument
- ▶ Propose simplified algorithm with comparable generalization performance

NetGAN

- Successful graph generative model
- Complicated and not transparent

Our contribution: conceptual analysis

- Uncover inductive bias: low-rank assumption
- Starting point to better understand inductive bias
- Bypass sampling by using a limit argument
- ▶ Propose simplified algorithm with comparable generalization performance

Future work

NetGAN

- Successful graph generative model
- Complicated and not transparent

Our contribution: conceptual analysis

- Uncover inductive bias: low-rank assumption
- Starting point to better understand inductive bias
- Bypass sampling by using a limit argument
- Propose simplified algorithm with comparable generalization performance

Future work

Explain contribution of low-rank assumption

NetGAN

- Successful graph generative model
- Complicated and not transparent

Our contribution: conceptual analysis

- Uncover inductive bias: low-rank assumption
- Starting point to better understand inductive bias
- Bypass sampling by using a limit argument
- Propose simplified algorithm with comparable generalization performance

Future work

Explain contribution of low-rank assumption