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Our contribution

Conceptual analysis

§ Inductive bias of NetGAN
§ Bypass sampling random walks

Simplified version (no GAN, no sampling): “Cross-Entropy Low-rank Logits
(CELL)”

§ Higher transparency
§ Comparable generalization performance
§ Huge speedup
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NetGAN: learning step
§ Goal: learn random walk distribution

§ Training set: unbiased random walks tpvpiq0 , . . . , v
piq
T qui of length T over input

graph
§ Generator: generate sequences tpwpiq0 , . . . , w

piq
T qui of “synthetic” random walks

§ Discriminator: distinguish synthetic from real random walks
§ Architecture: LSTMs with Wasserstein loss
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NetGAN: reconstruction step
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Overview of simplifications
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Replacing the GAN (1)
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Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
7 Random walk distribution determines graph

The GAN?
7 Perfectly learning random walk distribution simply memorizes graph

The LSTM?
7 No long-term dependencies in random walks

NetGAN Val-Criterion EO-Criterion
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Replacing the GAN (3)

§ Number of nodes N , set of random walks R, low rank H, row-wise softmax σrows

§ Generator learns random walk distribution by learning random walk transition
matrix from parametric family

P “ tσrowspW q P RNˆN : W P RNˆN , rankpW q ď Hu .

§ Do this directly with maximum likelihood estimation

min
WPRNˆN

´
ÿ

pi,jqPR
log σrowspW qi,j ,

s. t. rankpW q ď H .
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Bypassing sampling (1)

Input
graph

NetGAN:

CELL:

Sample
random walks
from graph

Train GAN
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Solve
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Convert
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into edge-

independent
model
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1. Replace GAN with rank-constrained optimization problem
2. Bypass random walk sampling
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Bypassing sampling (2)
§ NetGAN samples many random walks from input graph & from generator

§ Example: On CORA-ML (2,810/ 7,981), sees every edge „ 14, 000 times on
average

§ Count random walk transitions in score matrix S P RNˆN

§ Length of random walk T , amount of random walks n. Normalized score matrix
converges

S

nT
a. s.

ÝÝÝÝÝÑ
n,TÑ8

diagpπqP ,

where P is corresponding random walk transition matrix and π its stationary
distribution.

Replace normalized score matrix
with its limit

10 / 14



Bypassing sampling (2)
§ NetGAN samples many random walks from input graph & from generator
§ Example: On CORA-ML (2,810/ 7,981), sees every edge „ 14, 000 times on
average

§ Count random walk transitions in score matrix S P RNˆN

§ Length of random walk T , amount of random walks n. Normalized score matrix
converges

S

nT
a. s.

ÝÝÝÝÝÑ
n,TÑ8

diagpπqP ,

where P is corresponding random walk transition matrix and π its stationary
distribution.

Replace normalized score matrix
with its limit

10 / 14



Bypassing sampling (2)
§ NetGAN samples many random walks from input graph & from generator
§ Example: On CORA-ML (2,810/ 7,981), sees every edge „ 14, 000 times on
average

§ Count random walk transitions in score matrix S P RNˆN

§ Length of random walk T , amount of random walks n. Normalized score matrix
converges

S

nT
a. s.

ÝÝÝÝÝÑ
n,TÑ8

diagpπqP ,

where P is corresponding random walk transition matrix and π its stationary
distribution.

Replace normalized score matrix
with its limit

10 / 14



Bypassing sampling (2)
§ NetGAN samples many random walks from input graph & from generator
§ Example: On CORA-ML (2,810/ 7,981), sees every edge „ 14, 000 times on
average

§ Count random walk transitions in score matrix S P RNˆN

§ Length of random walk T , amount of random walks n. Normalized score matrix
converges

S

nT
a. s.

ÝÝÝÝÝÑ
n,TÑ8

diagpπqP ,

where P is corresponding random walk transition matrix and π its stationary
distribution.

Replace normalized score matrix
with its limit

10 / 14



Bypassing sampling (2)
§ NetGAN samples many random walks from input graph & from generator
§ Example: On CORA-ML (2,810/ 7,981), sees every edge „ 14, 000 times on
average

§ Count random walk transitions in score matrix S P RNˆN

§ Length of random walk T , amount of random walks n. Normalized score matrix
converges

S

nT
a. s.

ÝÝÝÝÝÑ
n,TÑ8

diagpπqP ,

where P is corresponding random walk transition matrix and π its stationary
distribution.

Replace normalized score matrix
with its limit

10 / 14



Bypassing sampling (3)
1. Learning step (with adjacency matrix A)

min
WPRNˆN

´
ÿ

pi,jqPR

log σrowspW qi,j ,

s. t. rankpW q ď H

Ñ

min
WPRNˆN

´
ÿ

k,l

Ak,l log σrowspW qk,l ,

s. t. rankpW q ď H

2. Reconstruction step (with synthetic transition matrix P ˚)

Compute S by counting
transitions of synthetic random

walks
Ñ S :“ diagpπ˚qP ˚

Bypass sampling in both steps
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Experiments (1)
Does CELL generate the same type of graphs as NetGAN?

Yes!
Graph: CORA-ML citation network (2,810/ 7,981)
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Experiments (2)

CELL is significantly faster

Table: Training time (in seconds) for NetGAN and CELL on a variety of networks. NetGAN
requires a GPU, while CELL runs on a CPU.

Data set (Nodes/ Edges) NetGAN CELL

CORA-ML (2,810/ 7,981) 7,478 21
Citeseer (2,110/ 3,668) 4,654 10
PolBlogs (1,222/ 16,779) 55,276 15
RT-GOP (4,687/ 5,529) 14,800 23
Web-EDU (3,031/ 6,474) 11,000 16
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Conclusion

NetGAN

§ Successful graph generative model
§ Complicated and not transparent

Our contribution: conceptual analysis
§ Uncover inductive bias: low-rank assumption
§ Starting point to better understand inductive bias
§ Bypass sampling by using a limit argument
§ Propose simplified algorithm with comparable generalization performance

Future work
§ Explain contribution of low-rank assumption
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