Relaxing Bijectivitiy Constraints with Continuously Indexed Normalising Flows ICML 2020

Rob Cornish, Anthony Caterini, George Deligiannidis, Arnaud Doucet

University of Oxford

July 12-18, 2020

Image: A match a ma

Motivation

The following densities were learned using a Gaussian prior with a 10-layer Residual Flow [Chen et al., 2019] (.5M parameters) trained to convergence.

Figure 1: Darker regions indicate lower density. Data shown in black.

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Normalising Flows (NFs) define the following process:

$$Z \sim P_Z, \qquad X := f(Z),$$

where *f* is a diffeomorphism.

・ロト ・回ト ・ヨト ・

Normalising Flows (NFs) define the following process:

$$Z \sim P_Z, \qquad X := f(Z),$$

where *f* is a diffeomorphism.

Hence the support of X will share the same topological properties as the support of Z, i.e.

- Number of connected components
- Number of "holes"
- How they are "knotted"
- etc.

Image: A math a math

This suggests a problem when the support of the prior P_Z is simple (e.g. a Gaussian): we usually can't then reproduce the target exactly.

・ロト ・日 ・ ・ ヨト ・

This suggests a problem when the support of the prior P_Z is simple (e.g. a Gaussian): we usually can't then reproduce the target exactly.

Moreover, to approximate the target closely, our flow must approach non-invertibility.

イロト イポト イヨト イ

Continuously indexed flows (CIFs) instead use the process

$$Z \sim P_Z$$
, $U \mid Z \sim P_{U|Z}(\cdot \mid Z)$, $X \coloneqq F(Z; U)$,

where U is a continuous index variable, and each $F(\cdot; u)$ is a normalising flow.

・ロト ・ 同ト ・ ヨト

Continuously indexed flows (CIFs) instead use the process

$$Z \sim P_Z$$
, $U \mid Z \sim P_{U|Z}(\cdot \mid Z)$, $X \coloneqq F(Z; U)$,

where U is a continuous index variable, and each $F(\cdot; u)$ is a normalising flow.

Any existing normalising flow can be used to construct F.

Image: A match a ma

Continuously indexed flows (CIFs) instead use the process

$$Z \sim P_Z$$
, $U \mid Z \sim P_{U|Z}(\cdot \mid Z)$, $X \coloneqq F(Z; U)$,

where U is a continuous index variable, and each $F(\cdot; u)$ is a normalising flow.

Any existing normalising flow can be used to construct F.

A continuous index means the density of X is no longer tractable, but can be trained via a natural ELBO objective instead.

Image: A matching of the second se

Benefits

Intuitively, CIFs can "clean up" mass that would otherwise be misplaced by a single bijection.

Figure 2: 10-layer Residual Flow (top) and Continuously-Indexed Residual Flow (bottom). Both use .5M parameters.

• • • • • • • • • •

What happens when we model a complicated target using a normalising flow?

Theorem: If the prior Z has non-homeomorphic support to a target X_* , then a sequence of flows $f_n(Z) \to X_*$ in distribution only if

$$\max\left\{\operatorname{Lip} f_n,\operatorname{Lip} f_n^{-1}\right\}\to\infty.$$

・ロト ・回ト ・ヨト ・

What happens when we model a complicated target using a normalising flow?

Theorem: If the prior Z has non-homeomorphic support to a target X_* , then a sequence of flows $f_n(Z) \to X_*$ in distribution only if

$$\max\left\{\operatorname{Lip} f_n,\operatorname{Lip} f_n^{-1}\right\}\to\infty.$$

・ロト ・回ト ・ヨト ・

For residual flows [Chen et al., 2019],

$$\max\left\{\operatorname{Lip} f_n, \operatorname{Lip} f_n^{-1}\right\} \leq \max\left\{1+\kappa, (1-\kappa)^{-1}\right\}^L < \infty,$$

where $\kappa \in (0, 1)$ is fixed and L is the number of layers.

Hence the previous theorem guarantees we cannot have $f_n(Z) \to X_*$ in distribution regardless of training time, neural network size, etc.

For most other flows, max $\{ \text{Lip } f_n, \text{Lip } f_n^{-1} \}$ is unconstrained [Behrmann et al., 2020].

However, we can still only have $f_n(Z) = X_{\star}$ exactly if the supports of Z and X_{\star} are homeomorphic.

It seems reasonable to hope for better performance if we can generalise our model class so that $f_n(Z) = X_*$ is at least possible.

Image: A marked and A marked

Recap: Continuously-indexed flows (CIFs) use the process

$$Z \sim P_Z$$
, $U \mid Z \sim P_{U|Z}(\cdot \mid Z)$, $X \coloneqq F(Z; U)$,

where U is a continuous index variable, and each $F(\cdot; u)$ is a normalising flow.

イロト イヨト イヨト イ

Recap: Continuously-indexed flows (CIFs) use the process

$$Z \sim P_Z$$
, $U \mid Z \sim P_{U|Z}(\cdot \mid Z)$, $X \coloneqq F(Z; U)$,

where U is a continuous index variable, and each $F(\cdot; u)$ is a normalising flow.

This is compatible with all existing normalising flows: take

$$F(z; u) = f\left(e^{-s(u)} \odot z - t(u)\right).$$

where f is a standard flow.

Image: A math a math

Multi-layer CIFs

An L-layer CIF is obtained by

 $U_1 \sim P_{U_1|Z_0}(\cdot|Z_0), \qquad Z_1 = F_1(Z_0; U_1),$ $U_L \sim P_{U_L|Z_{L-1}}(\cdot|Z_{L-1}), \qquad X = F_L(Z_{L-1}; U_L).$

Figure 3: Graphical multi-layer CIF generative model.

・ロト ・日 ・ ・ ヨ ・ ・

The marginal p_X is intractable, but the joint $p_{X,U_{1:L}}$ has a closed-form.

イロト イロト イヨト イ

The marginal p_X is intractable, but the joint $p_{X,U_{1:I}}$ has a closed-form.

Given an inference model $q_{U_{1:L}|X}$, we can use the ELBO for training:

$$\mathcal{L}(x) := \mathbb{E}_{u_{1:L} \sim q_{U_{1:L}|X}(\cdot|x)} \left[\log \frac{p_{X,U_{1:L}}(x,u_{1:L})}{q_{U_{1:L}|X}(u_{1:L}|x)} \right] \leq \log p_X(x).$$

・ロト ・日下・ ・ ヨト・

The marginal p_X is intractable, but the joint $p_{X,U_{1:L}}$ has a closed-form.

Given an inference model $q_{U_{1:L}|X}$, we can use the ELBO for training:

$$\mathcal{L}(x) := \mathbb{E}_{u_{1:L} \sim q_{U_{1:L}|X}(\cdot|x)} \left[\log \frac{p_{X,U_{1:L}}(x,u_{1:L})}{q_{U_{1:L}|X}(u_{1:L}|x)} \right] \leq \log p_X(x).$$

At test time, we can estimate $\log p_X(x)$ to arbitrary precision using an *m*-sample IWAE estimate with $m \gg 1$.

イロト イロト イヨト イヨ

To obtain an efficient inference model $q_{U_{1:L}|X}$, we exploit the conditional independence structure of $p_{U_{1:L}|X}$ from the forward model:

$$Z_L = X,$$

 $U_L \sim q_{U_L|Z_L}(\cdot|Z_L),$ $Z_{L-1} = F_L^{-1}(Z_L; U_L),$
 \dots
 $U_1 \sim q_{U_1|Z_1}(\cdot|Z_1),$ $Z_0 = F_1^{-1}(Z_1; U_1).$

In other words

$$q_{U_{1:L}|X}(U_{1:L}|X) := \prod_{\ell=1}^L q_{U_\ell|Z_\ell}(U_\ell|Z_\ell).$$

イロト イヨト イヨト イヨ

To obtain an efficient inference model $q_{U_{1:L}|X}$, we exploit the conditional independence structure of $p_{U_{1:L}|X}$ from the forward model:

$$\begin{split} & Z_L = X, \\ U_L \sim q_{U_L \mid Z_L}(\cdot \mid Z_L), & Z_{L-1} = F_L^{-1}(Z_L; U_L), \\ & \cdots \\ & U_1 \sim q_{U_1 \mid Z_1}(\cdot \mid Z_1), & Z_0 = F_1^{-1}(Z_1; U_1). \end{split}$$

In other words

$$q_{U_{1:L}|X}(U_{1:L}|X) := \prod_{\ell=1}^{L} q_{U_{\ell}|Z_{\ell}}(U_{\ell}|Z_{\ell}).$$

This naturally shares weights between the forward and inverse models, since the same F_{ℓ} are used in both cases.

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Intuitively, the additional flexibility afforded by $P_{U|Z}$ allows a CIF to "clean up" mass that would be misplaced by a single bijection

<ロト < 団ト < 臣ト < 臣

Intuitively, the additional flexibility afforded by $P_{U|Z}$ allows a CIF to "clean up" mass that would be misplaced by a single bijection

Proposition: Under mild conditions on the target and *F*, there exists $P_{U|Z}$ such that the model *X* has the same support as the target.

・ロト ・日 ・ ・ ヨ ・ ・

Intuitively, the additional flexibility afforded by $P_{U|Z}$ allows a CIF to "clean up" mass that would be misplaced by a single bijection

Proposition: Under mild conditions on the target and *F*, there exists $P_{U|Z}$ such that the model *X* has the same support as the target.

Proposition: If $F(z; \cdot)$ is surjective for each *z*, there exists $P_{U|Z}$ such that *X* matches the target distribution exactly.

<ロト < 団ト < 臣ト < 臣

CIFs may be understood as a hybrid between standard normalising flow and VAE density models:

In all cases X = F(Z; U) for some family of bijections F

・ロト ・日 ・ ・ ヨト ・

Table 1: Test set bits per dimension. Lower is better.

MNIST CIFAR-10 ResFlow (small) 1.074 3.474 ResFlow (big) 1.018 3.422 CIF-ResFlow 0.922 3.334			
ResFlow (small) 1.074 3.474 ResFlow (big) 1.018 3.422 CIF-ResFlow 0.922 3.334		MNIST	CIFAR-10
	ResFlow (small) ResFlow (big) CIF-ResFlow	1.074 1.018 0.922	3.474 3.422 3.334

Note that these ResFlows were smaller than those used by Chen et al. [2019].

・ロト ・日下・ ・ ヨト・

Table 1: Test set bits per dimension. Lower is better.

	MNIST	CIFAR-10
ResFlow (small)	1.074	3.474
ResFlow (BIG)	1.018	3.422
CIF-ResFlow	0.922	3.334

Note that these ResFlows were smaller than those used by Chen et al. [2019].

We obtained similar improvements on several other problems and flow models

イロト イヨト イヨト イ

Table 1: Test set bits per dimension. Lower is better.

	MNIST	CIFAR-10
ResFlow (small)	1.074	3.474
ResFlow (BIG)	1.018	3.422
CIF-ResFlow	0.922	3.334

Note that these ResFlows were smaller than those used by Chen et al. [2019].

We obtained similar improvements on several other problems and flow models

イロト イヨト イヨト イ

Figure 4: Joint work with Anthony Caterini, George Deligiannidis, and Arnaud Doucet

< ロト < 回ト < 三ト</p>

- Rob Cornish, Anthony L Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity constraints with continuously-indexed normalising flows. In *International Conference on Machine Learning*, 2020.
- Tian Qi Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invertible generative modeling. In *Advances in Neural Information Processing Systems*, pages 9913–9923, 2019.
- Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger B. Grosse, and Jörn-Henrik Jacobsen. On the invertibility of invertible neural networks, 2020.

イロト イポト イヨト イヨ