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Motivation
The following densities were learned using a Gaussian prior with a 10-layer
Residual Flow [Chen et al., 2019] (.5M parameters) trained to convergence.

Figure 1: Darker regions indicate lower density. Data shown in black.
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Why Does This Occur?

Normalising Flows (NFs) define the following process:

Z ∼ PZ, X := f(Z),

where f is a diffeomorphism.

Hence the support of X will share the same topological properties as the support
of Z, i.e.

Number of connected components
Number of “holes”
How they are “knotted”
etc.
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Problem

This suggests a problem when the support of the prior PZ is simple (e.g. a
Gaussian): we usually can’t then reproduce the target exactly.

Moreover, to approximate the target closely, our flow must approach
non-invertibility.

University of Oxford Continuously Indexed Flows July 12-18, 2020 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problem

This suggests a problem when the support of the prior PZ is simple (e.g. a
Gaussian): we usually can’t then reproduce the target exactly.

Moreover, to approximate the target closely, our flow must approach
non-invertibility.

University of Oxford Continuously Indexed Flows July 12-18, 2020 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Our Proposal: Continuously Indexed Flows

Continuously indexed flows (CIFs) instead use the process

Z ∼ PZ, U | Z ∼ PU|Z(· | Z), X := F(Z;U),

where U is a continuous index variable, and each F(·; u) is a normalising flow.

Any existing normalising flow can be used to construct F.

A continuous index means the density of X is no longer tractable, but can be
trained via a natural ELBO objective instead.
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Benefits
Intuitively, CIFs can “clean up” mass that would otherwise be misplaced by a
single bijection.

Figure 2: 10-layer Residual Flow (top) and Continuously-Indexed Residual Flow
(bottom). Both use .5M parameters.
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Going Deeper

What happens when we model a complicated target using a normalising flow?

Theorem: If the prior Z has non-homeomorphic support to a target X⋆, then a
sequence of flows fn(Z) → X⋆ in distribution only if

max
{
Lip fn, Lip f−1

n
}
→ ∞.
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Implications for Residual Flows

For residual flows [Chen et al., 2019],

max
{
Lip fn, Lip f−1

n
}
≤ max

{
1 + κ, (1 − κ)−1}L

< ∞,

where κ ∈ (0, 1) is fixed and L is the number of layers.

Hence the previous theorem guarantees we cannot have fn(Z) → X⋆ in distribution
regardless of training time, neural network size, etc.
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Implications for Other Flows

For most other flows, max
{
Lip fn, Lip f−1

n
}

is unconstrained [Behrmann et al.,
2020].

However, we can still only have fn(Z) = X⋆ exactly if the supports of Z and X⋆ are
homeomorphic.

It seems reasonable to hope for better performance if we can generalise our model
class so that fn(Z) = X⋆ is at least possible.
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Continuously Indexed Flows

Recap: Continuously-indexed flows (CIFs) use the process

Z ∼ PZ, U | Z ∼ PU|Z(· | Z), X := F(Z;U),

where U is a continuous index variable, and each F(·; u) is a normalising flow.

This is compatible with all existing normalising flows: take

F(z; u) = f
(

e−s(u) ⊙ z − t(u)
)
.

where f is a standard flow.
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Multi-layer CIFs

An L-layer CIF is obtained by

Z0 ∼ PZ0 ,

U1 ∼ PU1|Z0(·|Z0), Z1 = F1(Z0;U1),

· · ·
UL ∼ PUL|ZL−1(·|ZL−1), X = FL(ZL−1;UL).

����−1�1

�1 ��−1

...
�0 �

Figure 3: Graphical multi-layer CIF generative model.
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Training and inference

The marginal pX is intractable, but the joint pX,U1:L has a closed-form.

Given an inference model qU1:L|X, we can use the ELBO for training:

L(x) := Eu1:L∼qU1:L|X(·|x)

[
log

pX,U1:L(x, u1:L)

qU1:L|X(u1:L|x)

]
≤ log pX(x).

At test time, we can estimate log pX(x) to arbitrary precision using an m-sample
IWAE estimate with m ≫ 1.
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Inference model

To obtain an efficient inference model qU1:L|X, we exploit the conditional
independence structure of pU1:L|X from the forward model:

ZL = X,
UL ∼ qUL|ZL(·|ZL), ZL−1 = F−1

L (ZL;UL),

· · ·
U1 ∼ qU1|Z1(·|Z1), Z0 = F−1

1 (Z1;U1).

In other words

qU1:L|X(U1:L|X) :=
L∏

ℓ=1
qUℓ|Zℓ

(Uℓ|Zℓ).

This naturally shares weights between the forward and inverse models, since the
same Fℓ are used in both cases.
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Intuition

Intuitively, the additional flexibility afforded by PU|Z allows a CIF to “clean up”
mass that would be misplaced by a single bijection

Proposition: Under mild conditions on the target and F, there exists PU|Z such
that the model X has the same support as the target.

Proposition: If F(z; ·) is surjective for each z, there exists PU|Z such that X
matches the target distribution exactly.
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Comparison with related models

CIFs may be understood as a hybrid between standard normalising flow and VAE
density models:

X

Z

U

NF

X

U

Z

VAE

X

U

Z

CIF

In all cases X = F(Z;U) for some family of bijections F
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Experimental Results

Table 1: Test set bits per dimension. Lower is better.

MNIST CIFAR-10

ResFlow (small) 1.074 3.474
ResFlow (big) 1.018 3.422
CIF-ResFlow 0.922 3.334

Note that these ResFlows were smaller than those used by Chen et al. [2019].

We obtained similar improvements on several other problems and flow models
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Thank you!

Figure 4: Joint work with Anthony Caterini, George Deligiannidis, and Arnaud Doucet
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