Normalizing Flows on Tori and Spheres

ICML 2020

Collaborators

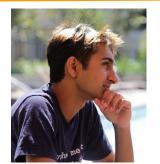
DeepMind

Danilo Rezende

George Papamakarios

Sébastien Racanière

Center for Theoretical Physics, MIT



Gurtej Kanwar

Phiala Shanahan

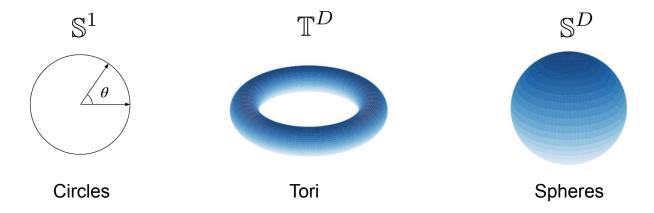
Center for Cosmology and Particle Physics, NYU

Michael Albergo

Kyle Cranmer

Overview

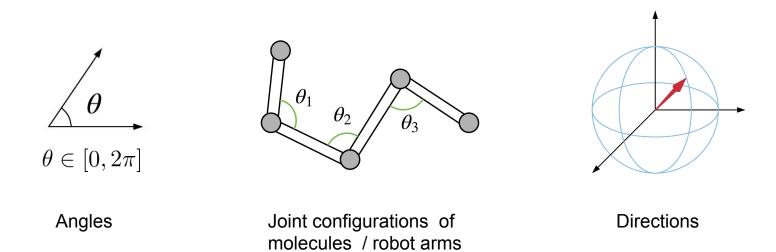
Probability distributions on:



- As flexible as we like
- ullet Any dimension D we like
- With efficient and exact density evaluation and sampling

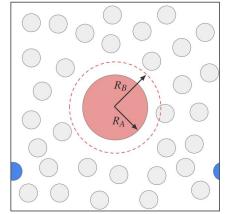
Why circles, tori and spheres?

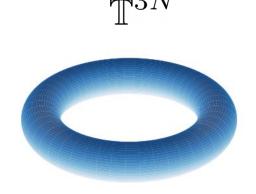
Not all data are Euclidean!



Physics application: Estimating free energy

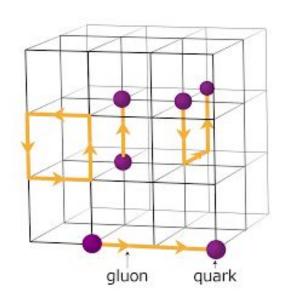
System of N particles with periodic boundary conditions





Wirnsberger & Ballard et al., *Targeted free energy estimation via learned mappings*, arxiv.org/abs/2002.04913, 2020

Physics application: Simulating quantum fields on a lattice



$$U(1) \cong \mathbb{S}^1$$

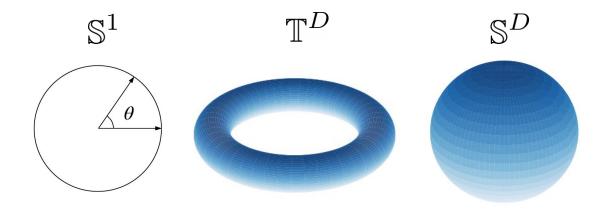
$$\mathrm{SU}(2)\cong\mathbb{S}^3$$

$$U(1) \cong \mathbb{S}^1$$

$$SU(2) \cong \mathbb{S}^3$$
 Diagonal $SU(3) \cong \mathbb{T}^2$

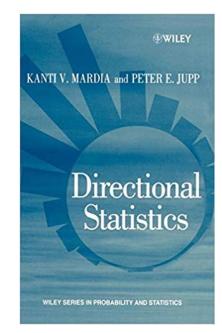
Kanwar et al., Equivariant flow-based sampling for lattice gauge theory, arxiv.org/abs/2003.06413, 2020

Directional statistics

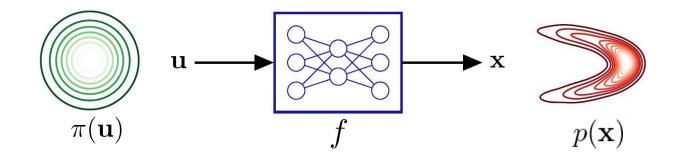


Common techniques:

- Wrapping (e.g. wrapped Gaussian)
- Projecting (e.g. projected Gaussian)
- Conditioning (e.g. von Mises-Fisher)



Normalizing flows



Sampling

$$\mathbf{u} \sim \pi(\mathbf{u})$$

$$\mathbf{u} \sim \pi(\mathbf{u})$$

 $\mathbf{x} = f(\mathbf{u})$

Density evaluation

$$p(\mathbf{x}) = \pi(\mathbf{u}) \left| \det \frac{\partial f}{\partial \mathbf{u}} \right|^{-1}$$

Flows on the circle

$$f: \stackrel{\checkmark_{\theta}}{\bigcirc} \rightarrow \stackrel{\checkmark_{\theta}}{\bigcirc}$$

Parameterize using angle:

$$f: [0, 2\pi] \to [0, 2\pi]$$

Fix endpoints:

$$f(0) = 0$$
$$f(2\pi) = 2\pi$$

Positive derivative:

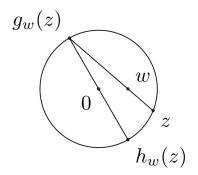
$$\nabla f(\theta) > 0$$

Match endpoint derivatives:

$$\nabla f(0) = \nabla f(2\pi)$$

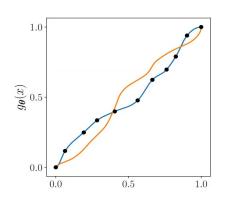
Flows on the circle: Three ways

Möbius transforms

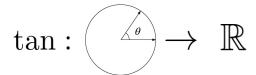


+ rotation to fix endpoints

Circular splines (CS)



Non-compact projections (NCP)



affine: $\mathbb{R} \to \mathbb{R}$

 $\tan^{-1}: \mathbb{R} \to \bigcirc$

Expressive flows on circle: Mixtures

Composing Möbius (or NCP) transformations does not increase expressivity since they form a group. Instead, we propose an efficient method to create mixtures of them.

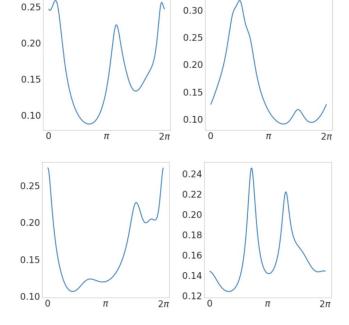
Assume

- N flows f_k on S^1
- •

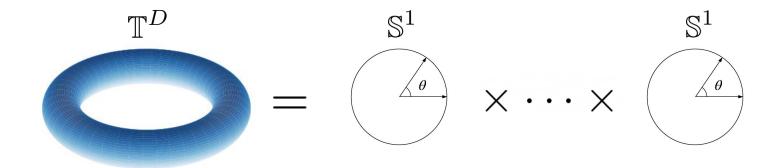
Define
$$f_k(0) = 0, f_k(2\pi) = 2\pi, \nabla f_k(0) = \nabla f_k(2\pi)$$

$$f(\theta) = \frac{1}{N} \sum_{k} f_k(\theta)$$

Still a valid diffeomorphism of S¹ with tractable Jacobian!



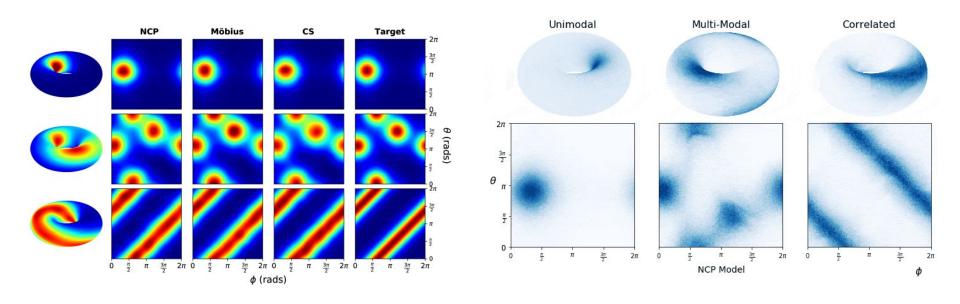
Flows on tori



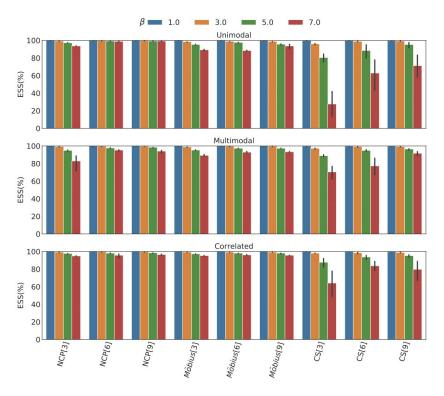
$$p(\theta_1, \dots, \theta_D) = \prod_i p(\theta_i \mid \theta_1, \dots, \theta_{i-1})$$

Autoregressive flow whose conditionals are circle flows (Möbius, CS or NCP)

Flows on tori: Results

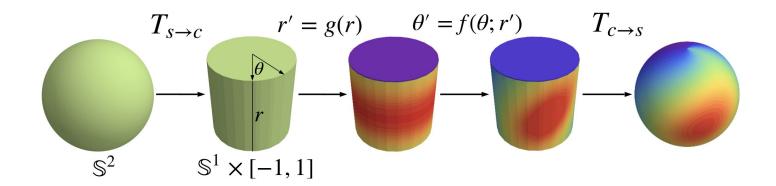


Flows on the circle: Results



Comparison of Möbius, CS & NCP

Flows on 2-spheres: Cylindrical coordinates



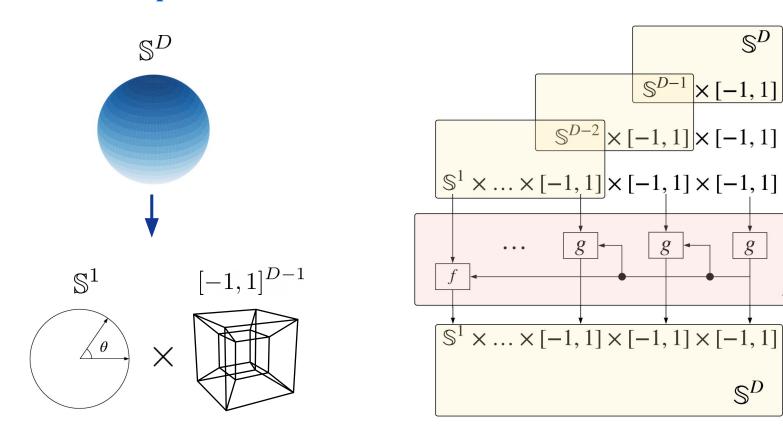
Sphere to cylinder

$$T_{s \to c}(x) = \left(\frac{x_{1:D}}{\sqrt{1 - x_{D+1}^2}}, x_{D+1}\right)$$

Cylinder to sphere

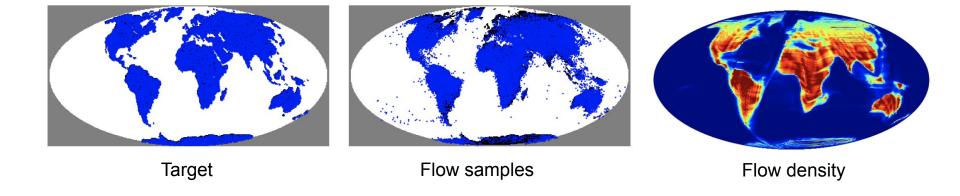
$$T_{c \to s}(z, r) = \left(z\sqrt{1 - r^2}, r\right)$$

Flows on spheres: Recursive D-dimensional model

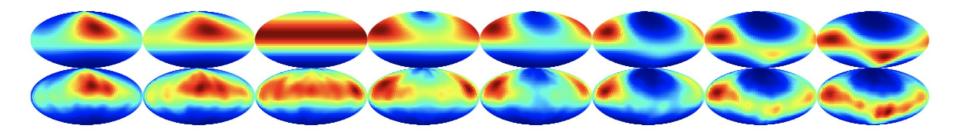


AR

Flows on spheres: Results on S2



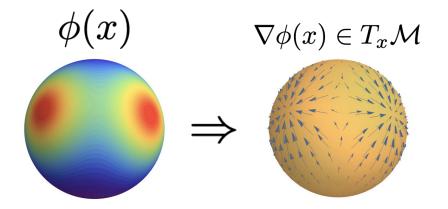
Flows on spheres: Results on $SU(2) \Leftrightarrow S3$

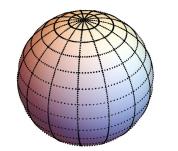


Target (top) vs flow (bottom) on a 3D sphere (shown are Mollweide projections)

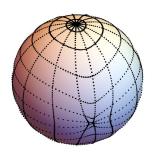
Flows on spheres: Exponential-Map flow

$$\exp_x : T_x S^n \to S^n \qquad \exp_x(v) = x \cos ||v|| + \frac{v}{||v||} \sin ||v||$$





$$x \to \exp_x(\nabla \phi(x))$$



Autoregressive VS Exponential map flows on N-Spheres

	Model	KL [nats]	ESS
Auto-reg	MS $(N_T = 1, K_m = 12, K_s = 32)$	0.05(0.01)	90%
Exp-map	$EMP (N_T = 1)$	0.50(0.09)	43%
	EMSRE $(N_T = 1, K = 12)$	0.82(0.30)	42%
	EMSRE $(N_T = 6, K = 5)$	0.19(0.05)	75%
	EMSRE $(N_T=24,K=1)$	0.10(0.10)	85%

Autoregressive VS Exponential map flows on N-Spheres

Method	Autoregressive	Exponential map	
Pros	Easy to scale ~O(N)Modular	 Intrinsic to the sphere (does not require any particular coordinate system) Defined everywhere on the sphere (no numerical instabilities) Simpler to incorporate known symmetries 	
Cons	 Requires removing a set of measure-zero from the n-sphere, this may lead to numerical issues Requires a particular coordinate system Hard to combine with domain knowledge about density (e.g. symmetries) 	 Hard to scale ~O(N^3) More constrained family of flows 	

Takeaways

- Not all data are Euclidean!
- Directional statistics
- Normalizing flows on tori and spheres
 - As flexible as we like
 - Any-dimensional
 - Efficient and exact density evaluation and sampling
- Paper available at: <u>arxiv.org/abs/2002.02428</u>