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Adversarial Attacks

Figure: Imperceptible adversarial perturbations in `2. [5]
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Adversarial Robustness

Figure: A sparse perturbation. [1]

Overarching Goal: Train classifiers robust to adversarial
perturbations.

I Examples in many areas of applications.

I Different possible forms of perturbations: changing every pixel
in an image vs. placing a sticker on a stop sign.

I Can we derive learning guarantees for adversarial robustness?
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Outline of Talk

Goal of our paper: Understand what characterizes robust
generalization and how it relates to non-robust generalization

1. Classification & Adversarial Classification setup

2. Rademacher complexity & Adversarial Rademacher
Complexity

3. Better bounds for adversarial Rademacher complexity of linear
classes

4. Better bounds for Rademacher complexity of linear classes

5. Adversarial Rademacher complexity of neural nets
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Standard Classification Setting

Binary Classification: Data distributed over Rd × {−1,+1}
according to D
Standard Setting:

I Given a predictor h : Rd → R, a point x is classified as
sign(h(x)).

I There is an error if yh(x) < 0, or 1yh(x)<0 = 1.

I The classification error is then

R(h) = E
(x,y)∼D

[1yh(x)<0]
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Defining Adversarial Perturbations

Adversarial Setting:

I The data is perturbed by ε in `p to
“fool” the classifier into thinking there is
an error, now an error occurs if

1 = sup
‖x−x′‖r≤ε

1yh(x′)<0 = 1inf‖x−x′‖r≤ε yh(x′)<0

I The adversarial classification error is then

R̃(h) = E
(x,y)∼D

[1inf‖x−x′‖r≤ε yh(x′)<0]
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Rademacher Complexity
The empirical Rademacher complexity is

RS(F) = E
σ

[
sup
f ∈F

1

m

m∑
i=1

σi f (zi )
]

Theorem (Margin Bounds [4])

R(h) ≤ R̂S,ρ(h)+
2

ρ
RS(F)+3

√
log 2

δ

2m

holds with probability at least
1− δ for all h ∈ F .

ρ-Margin Loss:

Φρ(u) = min(1,max(0, 1− u

ρ
))

0 1

1
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Adversarial Rademacher Complexity

Theorem (Robust margin bounds)

Define the class F̃ by

F̃ =
{

(x, y) 7→ inf
‖x−x′‖r≤ε

yf (x′) : f ∈ F
}
.

The following holds with probability at least 1− δ for all h ∈ F :

R̃(h) ≤ R̃S,ρ(h) +
2

ρ
RS(F̃) + 3

√
log 2

δ

2m
.

Definition
We define the adversarial Rademacher Complexity as

R̃S(F) := RS(F̃)
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Prior Work on Adversarial Rademacher Complexity of
Linear Classes

Fp = {x 7→ 〈w, x〉 : ‖w‖p ≤W }

Yin et. al. [6]: For perturbations in the infinity norm, for some
constant c

max(RS(Fp), cεW
d

1
p∗

√
m

) ≤ R̃S(Fp) ≤ RS(Fp) + εW
d

1
p∗

√
m

Khim and Loh [3]: For perturbation in the r -norm, there exists a
constant Mr for which

RS(F2) ≤ W√
m

max
(xi ,yi )∈S

‖xi‖2 + ε
Mr∗

2
√
m
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Adversarial Rademacher Complexity of Linear Classes

Fp = {x 7→ 〈w, x〉 : ‖w‖p ≤W }

Theorem
Let ε > 0, r ≥ 1. Consider a sample S = {(x1, y1), . . . , (xm, ym)}
with xi ∈ Rd and yi ∈ {±1} and perturbations in the r -norm.
Then

max

(
RS(Fp), ε

W max(d1− 1
r
− 1

p , 1)

2
√

2m

)
≤ R̃S(Fp)

≤ RS(Fp) + ε
W

2
√
m

max(d1− 1
r
− 1

p , 1)
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Rademacher Complexity of Linear Classes

Fp = {x 7→ 〈w, x〉 : ‖w‖p ≤W }

X = [x1 . . . xm]

Group norms: ‖A‖p,q = ‖(‖A1‖p · · · ‖Am‖p)‖q where Ai is the ith
row of A.
Prior Work [2]:

RS(Fp) ≤

{
W
√

2 log(2d)
m ‖X‖max if p = 1

W
m

√
p∗ − 1‖X‖p∗,2 if 1 < p ≤ 2

Our new bounds:

RS(Fp) ≤


W
m

√
2 log(2d)‖XT‖2,p∗ if p = 1

√
2W
m

[
Γ(

p∗+1
2 )
√
π

] 1
p∗

‖XT‖2,p∗ if 1 < p ≤ 2

W
m ‖X

T‖2,p∗ if p ≥ 2
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Comparing the Bounds for 1 < p ≤ 2

RS(Fp) ≤


W
m

√
p∗ − 1‖X‖p∗,2 old bound

√
2W
m

[
Γ(

p∗+1
2 )
√
π

] 1
p∗

‖XT‖2,p∗ new bound

Comparing the Norms: If p ≤ 2, then

min(m, d)
1
2
− 1

p∗ ‖XT‖2,p∗ ≥ ‖X‖p∗,2 ≥ ‖XT‖2,p∗

Comparing the Constants:

c1(p) =
√

p∗ − 1

c2(p) =
√

2
[Γ(p

∗+1
2 )
√
π

] 1
p∗
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Adversarial Rademacher Complexity of the ReLU

Gp = {(x, y) 7→ (y〈w, x〉)+ : ‖w‖p ≤W , y ∈ {−1, 1}}
Fp = {x 7→ 〈w, x〉 : ‖w‖p ≤W }

Theorem
The adversarial Rademacher complexity of Gp can be bounded as
follows:

W δε

2
√

2m
|T δ
ε,s∗ |max(d1− 1

p
− 1

r , 1) ≤R̃S(Gp)

≤ RTε(Fp) + ε
W

2
√
m

max(1, d1− 1
r
− 1

p ),

where
Tε = {i : yi = −1 or , yi = 1 and ‖xi‖r > ε}

T δ
ε,s = {i : 〈s, xi 〉 − (1 + δyi )yiε‖s‖r∗>0}

and s∗ is the adversarial perturbation.
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Adversarial Rademacher Complexity of Neural Nets

Gnp =
{

(x, y) 7→ y
n∑

j=1

ujρ(wj · x) : ‖u‖1 ≤ Λ, ‖wj‖p ≤W
}
.

Theorem
Let ρ be a function with Lipschitz constant Lρ with ρ(0) = 0.
Then, the following upper bound holds for the adversarial
Rademacher complexity of Gnp :

R̃S(Gnp ) ≤ Lρ

[
WΛ max(1, d1− 1

p
− 1

r )(‖X‖r ,∞ + ε)√
m

]
×(

1 +
√

d(n + 1) log(36)
)
.
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Towards Dimension Independent Bounds

I Studying the structure of adversarial perturbations leads to
equations qualitatively similar to γ-fat shattering.

I Under appropriate assumptions, this can lead to dimension
independent bounds.
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Conclusion

We covered

I New bounds for Rademacher complexity of linear classes.

I New bounds for adversarial Rademacher complexity of linear
classes.

I New bounds for adversarial Rademacher complexity of Neural
nets.

Open problems

I Generalize to arbitrary norms: in general is the dual norm a
good regularizer?

I Improve the adversarial neural nets generalization bound or
find a matching lower bound.
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