# Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting

Nic Dalmasso<sup>1</sup>, Rafael Izbicki<sup>2</sup>, Ann B. Lee<sup>1</sup>

<sup>1</sup> Department of Statistics & Data Science, Carnegie Mellon University <sup>2</sup> Department of Statistics, Federal University of Sao Carlös

International Conference on Machine Learning (ICML) July 12-18 2020

<日<br />
<</p>

Motivation: Likelihood in Studying Complex Phenomena



However, for some complex phenomena in the science and engineering, an explicit likelihood function might not be available.

# Likelihood-Free Inference



- True likelihood cannot be evaluated
- Samples can be generated for fixed settings of θ, so the likelihood is implicitly defined

Inference on parameters  $\theta$  in this setting is known as likelihood-free inference (LFI).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Likelihood-Free Inference Literature

- Approximate Bayesian computation<sup>1</sup>
- More recent developments:
  - Direct posterior estimation (bypassing the likelihood)<sup>2</sup>
  - Likelihood estimation<sup>3</sup>
  - Likelihood ratio estimation<sup>4</sup>

Hypothesis testing and confidence sets can be considered cornerstones of classical statistics, but have not received much attention in LFI.

<sup>4</sup>Izbicki et al., 2014; Cranmer et al., 2015; Frate et al., 2016 ロト イクト イヨト イヨト ヨー つへで

<sup>&</sup>lt;sup>1</sup>Beaumont et al. 2002, Marin et al. 2012, Sisson et al. 2018

<sup>&</sup>lt;sup>2</sup>Marin et al., 2016; Izbicki et al., 2019; Greenberg et al., 2019

<sup>&</sup>lt;sup>3</sup>Thomas et al., 2016; Price et al., 2018; Ong et al., 2018; Lueckmann et al., 2019; Papamakarios et al., 2019

# A Frequentist Approach to LFI

Our goal is to develop:

- valid hypothesis testing procedures
- Onfidence intervals with the correct coverage

Main Challenges:

- Dealing with high-dimensional and different types of simulated data
- Computational efficiency
- Assessing validity and coverage

## Hypothesis Testing and Confidence Sets

Key ingredients:

- data  $\mathcal{D} = \{\mathbf{X}_1, ..., \mathbf{X}_n\}$
- a test statistic, such as likelihood ratio statistic  $\Lambda(\mathcal{D}; \theta_0)$
- an  $\alpha$ -level critical value  $C_{\theta_0,\alpha}$

Reject the null hypothesis  $H_0$  if  $\Lambda(\mathfrak{D}; \theta_0) < C_{\theta_0, \alpha}$ 

Theorem (Neyman inversion, 1937) Building a  $1 - \alpha$  confidence set for  $\theta$  is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs.  $H_A: \theta \neq \theta_0$ 

for  $\theta_0$  across the parameter space.

米田 とくほとくほど

#### Approximate Computation via Odds Ratio Estimation

#### Key Realization:

- Likelihood ratio statistic  $\log \Lambda(\mathcal{D}; \Theta_0)$ ,
- 2 Critical value of the test  $C_{\theta_0,\alpha}$ ,
- Overage of the confidence sets

Are conditional distribution functions which often vary smoothly as a function of the (unknown) parameters of interest  $\theta$ .

Rather than relying solely on samples at fixed parameter settings (standard Monte Carlo solutions), we can interpolate across the parameter space with ML models.

A (1) < A (1) < A (1) </p>

## Likelihood Ratio Statistic (I)

- Forward simulator  $F_{\theta}$ 
  - ▶ Identifiable model, i.e.  $F_{\theta_1} \neq F_{\theta_2}$  for  $\theta_1 \neq \theta_2 \in \Theta$
- **2** Proposal distribution for the parameters  $r(\theta)$  over  $\Theta$
- **③** Reference distribution G over the data space  $\mathfrak{X}$ 
  - Does not depend on  $\theta$
  - G needs to be a dominating measure of  $F_{\theta}$  for every  $\theta$

★ OK if  $G = F_{\theta}$  for one specific  $\theta \in \Theta$ 

Train a probabilistic classifier m to discriminate samples from G (Y = 0) between samples from  $F_{\theta}$  (Y = 1) given  $\theta$ .

$$m: (\theta, \mathbf{x}) \longrightarrow \mathbb{P}(Y = 1 | \mathbf{x}, \theta) \implies \mathbb{O}(\theta_0; \mathbf{x}) = \frac{\mathbb{P}(Y = 1 | \mathbf{x}, \theta)}{\mathbb{P}(Y = 0 | \mathbf{x}, \theta)} = \frac{F_{\theta}(\mathbf{x})}{G(\mathbf{x})}$$

#### Likelihood Ratio Statistic (II)

$$\log \mathbb{OR}(\mathbf{x}; \theta_0, \theta_1) = \log \frac{\mathbb{O}(\theta_0; \mathbf{x})}{\mathbb{O}(\theta_1; \mathbf{x})} \text{ (log-odds ratio)}$$

Suppose we want to test:

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \notin \Theta_0$$

We define the test statistics:

$$\tau(\mathcal{D};\Theta_0) := \sup_{\theta_0 \in \Theta_0} \inf_{\theta_1 \in \Theta} \sum_{i=1}^n \log\left(\widehat{\mathbb{OR}}(\mathbf{X}_i^{\mathsf{obs}};\theta_0,\theta_1)\right)$$

#### Theorem (Fisher's Consistency)

If 
$$\widehat{\mathbb{P}}(Y = 1|\theta, \mathbf{x}) = \mathbb{P}(Y = 1|\theta, \mathbf{x}) \,\forall \theta, \mathbf{x} \implies \tau(\mathcal{D}; \Theta_0) = \log \Lambda(\mathcal{D}; \Theta_0)$$

\* E > \* E >

< 17 ▶

# Likelihood Ratio Statistic (III)

Suppose we want to test:

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \notin \Theta_0$$

We define the test statistics:

$$\tau(\mathcal{D};\Theta_0) := \sup_{\theta_0 \in \Theta_0} \inf_{\theta_1 \in \Theta} \sum_{i=1}^n \log\left(\widehat{\mathbb{OR}}(\mathbf{X}_i^{\mathsf{obs}};\theta_0,\theta_1)\right)$$

By fitting a classifier m we can:

- estimate  $\widehat{\mathbb{OR}}(\mathbf{x}; \theta_0, \theta_1)$  for all  $\mathbf{x}, \theta_0, \theta_1$ ,
- leverage ML probabilistic classifier to deal with high-dimensional x,
- use loss-function as relative comparison of which classifier performs best among a set of classifiers.

Determine Critical Values  $C_{\theta_0,\alpha}$ 

We reject the null hypothesis when  $\tau(\mathcal{D}; \Theta_0) \leq C_{\theta_0, \alpha}$ , where  $C_{\theta_0, \alpha}$  is chosen so that the test has a size  $\alpha$ .

$$C_{\theta_0,\alpha} = \arg \sup_{C \in \mathbb{R}} \left\{ C : \sup_{\theta_0 \in \Theta_0} \mathbb{P}\left(\tau(\mathcal{D};\Theta_0) < C_{\theta_0} \mid \theta_0\right) \le \alpha \right\},\$$

**Problem**: Need to estimate  $\mathbb{P}(\tau(\mathcal{D};\Theta_0) < C_{\theta_0} \mid \theta_0)$  over any  $\theta \in \Theta$ .

**Solution**:  $\mathbb{P}(\tau(\mathcal{D}; \Theta_0) < C_{\theta_0} | \theta_0)$  is a (conditional) CDF, so we can estimate its  $\alpha$  quantile via quantile regression.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assessing Confidence Set Coverage

Set Coverage:  $\mathbb{E}[\mathbb{I}(\theta_0 \in R(\mathcal{D}))] = \mathbb{P}(\theta_0 \in R(\mathcal{D})) \ge 1 - \alpha$ 

- Marginal Coverage  $\checkmark$ Build R for different  $\theta_0^1, ..., \theta_0^n$  and check overall coverage
- Estimate Via Regression  $\checkmark$ Run ACORE for different  $\theta_0^1, ..., \theta_0^n$  and estimate coverage:

$$\{\theta_0^i, R(\mathcal{D}^i)\}_{i=1}^n \longrightarrow \mathsf{learn} \ \mathbb{E}[\mathbb{I}(\theta_0 \in R(\mathcal{D}))]$$

We can check that  $1-\alpha$  is within prediction interval for each  $\theta_0$ 

イロト イヨト イヨト ・





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## ACORE Relies on 5 Key Components



э

(日)

## A Practical Strategy

To apply ACORE, we need to choose five key components:

- a reference distribution G
- a probabilistic classifier
- a training sample size B for learning odds ratios
- a quantile regression algorithm
- $\bullet$  a training sample size  $B^\prime$  for estimating critical values

Empirical Strategy:

- Use prior knowledge or marginal distribution of a separate simulated sample to build G;
- Ise the cross entropy loss to select the classifier and B;
- **③** Use the goodness-of-fit procedure to select the quantile regression method and B'.

く 何 ト く ヨ ト く ヨ ト

## Also included in our work

#### Theoretical results

- Or Toy examples to showcase ACORE in situations where the true likelihood is known
- Signal detection example inspired by the particle physics literature
- Omparison with existing methods
- Open source Python implementation<sup>5</sup>
  - based on numpy, sklearn and PyTorch

# THANKS FOR WATCHING!

2

イロト イポト イヨト イヨト