Fair k-centers via Maximum Matching

by Huy Nguyen, Matthew Jones, Thy Nguyen

June 15, 2020

by Huy Nguyen, Matthew Jones, Thy Nguyen Fair *k*-centers via Maximum Matching

- Introduction
- The fair k-centers problem
- Approach using maximum matching
- Experiments

Clustering - using a small set of centers to approximate a large data set.

k-centers clustering - minimize the maximum cluster radius

Formally: **Input:** k, a set S of n points, a metric d **Find:** $\arg \min_{S' \subseteq S, |S'|=k} \max_{s \in S} d(s, S')$

where $d(s, S') = \min_{s' \in S'} d(s, s')$.

• The k-centers problem is NP-hard (up to a 2-approximation)

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm
 - Choose the first center arbitrarily

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm
 - Choose the first center arbitrarily
 - Choose each center as the farthest from the previously selected centers

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm
 - Choose the first center arbitrarily
 - Choose each center as the farthest from the previously selected centers
 - O(n) time to choose each center, whole algorithm is O(nk)

Fairness - removing inherent bias in an algorithm.

• Not necessarily an inherent mathematical concept

To add fairness:

- Items in S have a demographic group property
- Each dem. group i gets k_i centers

•
$$\sum_{i=1}^m k_i = k$$

In these slides, we use "fair" to mean satisfying all k_i as upper bounds.

Previous Work on *k*-centers with Fairness

Multiple papers present algorithms for fair *k*-centers:

• Chen et al. presented a 3-approximation algorithm, runs in $\Omega(n^2 \log n)$

Previous Work on k-centers with Fairness

Multiple papers present algorithms for fair k-centers:

- Chen et al. presented a 3-approximation algorithm, runs in $\Omega(n^2 \log n)$
- Kleindessner et al. introduced an $O(nkm^2 + km^4)$ algorithm with guaranteed approximation factor $3 \cdot 2^{m-1} 1$

Previous Work on k-centers with Fairness

Multiple papers present algorithms for fair k-centers:

- Chen et al. presented a 3-approximation algorithm, runs in $\Omega(n^2 \log n)$
- Kleindessner et al. introduced an $O(nkm^2 + km^4)$ algorithm with guaranteed approximation factor $3 \cdot 2^{m-1} 1$

We present an O(nk)-time 3-approximation algorithm for fair k-centers

• Obtain k initial (unfair) centers, using Gonzalez

- Obtain k initial (unfair) centers, using Gonzalez
- Find the largest prefix of these which can be "shifted fairly"

- Obtain k initial (unfair) centers, using Gonzalez
- Find the largest prefix of these which can be "shifted fairly"
- Shift these centers, choose the rest arbitrarily

- Obtain k initial (unfair) centers, using Gonzalez
- Find the largest prefix of these which can be "shifted fairly"
- Shift these centers, choose the rest arbitrarily

The first step is well-defined, how do we accomplish the second and third steps?

Does a fair shift exist within radius r for some set of points P?

• Draw balls of radius r around the centers

- Draw balls of radius r around the centers
- Reduce to matching:

- Draw balls of radius r around the centers
- Reduce to matching:
 - Each point in P gets one point in partition A

- Draw balls of radius r around the centers
- Reduce to matching:
 - Each point in P gets one point in partition A
 - Each demographic group gets k_i points in partition B

- Draw balls of radius r around the centers
- Reduce to matching:
 - Each point in P gets one point in partition A
 - Each demographic group gets k_i points in partition B
 - *ab* ∈ *E* iff point *a* (in *P*) has demographic group *b* in its ball (including *a* itself)

- Draw balls of radius r around the centers
- Reduce to matching:
 - Each point in P gets one point in partition A
 - Each demographic group gets k_i points in partition B
 - *ab* ∈ *E* iff point *a* (in *P*) has demographic group *b* in its ball (including *a* itself)
- Edges in match of size |P| give a fair shift iff one exists

For runtime, it is more efficient to view this as a maximum flow problem:Partition B gets 1 point per demographic group.

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition *B* gets 1 point per demographic group.
- Add edges from s to Partition A with capacity 1 and from Partition B to t with capacity k_i.

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition B gets 1 point per demographic group.
- Add edges from s to Partition A with capacity 1 and from Partition B to t with capacity k_i.
- Now, each point in S yields at most 1 edge $ab \in E$ so $|E| \le n + O(k) = O(n)$ and |V| = 2 + 2k + m = O(k)

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition *B* gets 1 point per demographic group.
- Add edges from s to Partition A with capacity 1 and from Partition B to t with capacity k_i.
- Now, each point in S yields at most 1 edge $ab \in E$ so $|E| \le n + O(k) = O(n)$ and |V| = 2 + 2k + m = O(k)

 $\Rightarrow O(nk^{1/2})$ time to check for a fair shift, using Dinitz's algorithm.

 \Rightarrow Use binary search, checking fair shift at each level

• Largest prefix of initial centers with a fair shift

- \Rightarrow Use binary search, checking fair shift at each level
 - Largest prefix of initial centers with a fair shift
 - binary search over k initial centers

- \Rightarrow Use binary search, checking fair shift at each level
 - Largest prefix of initial centers with a fair shift
 - binary search over k initial centers
 - r is maximized such that balls are non-overlapping.

- \Rightarrow Use binary search, checking fair shift at each level
 - Largest prefix of initial centers with a fair shift
 - binary search over k initial centers
 - r is maximized such that balls are non-overlapping.
 - Optimizing the shift radius on largest prefix

- \Rightarrow Use binary search, checking fair shift at each level
 - Largest prefix of initial centers with a fair shift
 - binary search over k initial centers
 - r is maximized such that balls are non-overlapping.
 - Optimizing the shift radius on largest prefix
 - binary search over discrete shift radii as r

- \Rightarrow Use binary search, checking fair shift at each level
 - Largest prefix of initial centers with a fair shift
 - binary search over k initial centers
 - r is maximized such that balls are non-overlapping.
 - Optimizing the shift radius on largest prefix
 - binary search over discrete shift radii as r
 - at most $km \le k^2$ such values, so log k levels

- \Rightarrow Use binary search, checking fair shift at each level
 - Largest prefix of initial centers with a fair shift
 - binary search over k initial centers
 - r is maximized such that balls are non-overlapping.
 - Optimizing the shift radius on largest prefix
 - binary search over discrete shift radii as r
 - at most $km \le k^2$ such values, so log k levels

O(nk) time total to build all the graphs, so each binary search has time complexity $O(nk + nk^{1/2} \log k) = O(nk)$.

Therefore, it takes O(nk) time each to

• run Gonzalez's algorithm

Therefore, it takes O(nk) time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

• fair shift costs no more than cost OPT

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

- fair shift costs no more than cost_{OPT}
- largest prefix with a fair shift has objective cost at most 2 · cost OPT

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

- fair shift costs no more than cost OPT
- largest prefix with a fair shift has objective cost at most 2 · cost_OPT
- \Rightarrow 3-approximation algorithm with O(nk) runtime.

We compared the following methods with Kleindessner et al.:

- Alg 2-Seq our fair *k*-centers algorithm, arbitrarily picks centers at the last step
- Alg 2-Heu B our fair *k*-centers algorithm, uses Heuristic B at the last step.
- Heuristic A runs Gonzalez for each demographic group *i*.
- Heuristic B runs Gonzalez but only keep centers that don't violate fairness.
- Heuristic C similar to A, but use distance to centers from all demographic groups.

Experiments Simulated Data

Figure: Mean runtime in seconds on simulated data

Table: Mean and standard deviation of objective value on simulated data

Task Algo	50 Groups	100 Groups	250 Groups	500 Groups
Alg 2-Seq			6.5 (0.41)	
Alg 2-Heu B	6.91 (0.26)	6.48 (0.25)	6.51 (0.43)	6.44 (0.38)
Kleindessner et al.	7.01 (0.46)	6.88 (0.75)	7.45 (0.78)	7.26 (0.51)
Heuristic A	21.38 (2.84)	17.7 (1.55)	16.61 (1.57)	13.87 (1.33)
Heuristic B	7.66 (1.09)	8.16 (0.94)	7.81 (0.71)	7.8 (0.62)
Heuristic C	7.26 (1.17)	7.43 (0.87)	7.44 (0.6)	7.42 (0.62)

Figure: Adult dataset runtime

Figure: Student and wholesale dataset runtime

Table: Mean and standard deviation of objective value on real data

Task Algo	A-Gender	A-Race	S-Sex	S-School	S-Address	W-Location
Alg 2-Seq	0.32 (0.01)	0.32 (0.01)	1.29 (0.04)	1.3 (0.04)	1.31 (0.05)	0.26 (0.01)
Alg 2-Heu B	0.32 (0.01)	0.32 (0.01)	1.28 (0.03)	1.28 (0.04)	1.3 (0.04)	0.26 (0.01)
Kleindessner et al.	0.36 (0.03)	0.34 (0.02)	1.29 (0.05)	1.29 (0.06)	1.3 (0.05)	0.27 (0.03)
Heuristic A	0.41 (0.02)	0.35 (0.03)	1.36 (0.02)	1.39 (0.04)	1.37 (0.04)	0.28 (0.01)
Heuristic B	0.37 (0.02)	0.32 (0.01)	1.29 (0.03)	1.3 (0.04)	1.3 (0.04)	0.27 (0.01)
Heuristic C	0.4 (0.02)	0.32 (0.02)	1.29 (0.03)	1.29 (0.02)	1.35 (0.05)	0.24 (0.02)

Image: Image:

Our Algorithm:

- 3-approximation
- O(nk) runtime
- Best algorithm in both runtime and performance
- Experimental support