Fair k-centers via Maximum Matching

by Huy Nguyen, Matthew Jones, Thy Nguyen

June 15, 2020

Content

- Introduction
- The fair k-centers problem
- Approach using maximum matching
- Experiments

Introduction

Clustering

Clustering - using a small set of centers to approximate a large data set.
k-centers clustering - minimize the maximum cluster radius

Formally:
Input: k, a set S of n points, a metric d Find:

$$
\arg \min _{S^{\prime} \subseteq S,\left|S^{\prime}\right|=k} \max _{s \in S} d\left(s, S^{\prime}\right)
$$

where $d\left(s, S^{\prime}\right)=\min _{s^{\prime} \in S^{\prime}} d\left(s, s^{\prime}\right)$.

Introduction
 k-Centers Clustering

- The k-centers problem is NP-hard (up to a 2-approximation)

Introduction
 k-Centers Clustering

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm

Introduction
 k-Centers Clustering

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm
- Choose the first center arbitrarily

Introduction
 k-Centers Clustering

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm
- Choose the first center arbitrarily
- Choose each center as the farthest from the previously selected centers

Introduction
 k-Centers Clustering

- The k-centers problem is NP-hard (up to a 2-approximation)
- Gonzalez gives a greedy 2-approximation algorithm
- Choose the first center arbitrarily
- Choose each center as the farthest from the previously selected centers
- $O(n)$ time to choose each center, whole algorithm is $O(n k)$

Introduction

A Framework for Fairness

Fairness - removing inherent bias in an algorithm.

- Not necessarily an inherent mathematical concept

To add fairness:

- Items in S have a demographic group property
- Each dem. group i gets k_{i} centers
- $\sum_{i=1}^{m} k_{i}=k$

In these slides, we use "fair" to mean satisfying all k_{i} as upper bounds.

The Fair k-Centers Problem

Previous Work on k-centers with Fairness

Multiple papers present algorithms for fair k-centers:

- Chen et al. presented a 3-approximation algorithm, runs in $\Omega\left(n^{2} \log n\right)$

The Fair k-Centers Problem

Previous Work on k-centers with Fairness

Multiple papers present algorithms for fair k-centers:

- Chen et al. presented a 3-approximation algorithm, runs in $\Omega\left(n^{2} \log n\right)$
- Kleindessner et al. introduced an $O\left(n k m^{2}+k m^{4}\right)$ algorithm with guaranteed approximation factor $3 \cdot 2^{m-1}-1$

The Fair k-Centers Problem

Multiple papers present algorithms for fair k-centers:

- Chen et al. presented a 3-approximation algorithm, runs in $\Omega\left(n^{2} \log n\right)$
- Kleindessner et al. introduced an $O\left(n k m^{2}+k m^{4}\right)$ algorithm with guaranteed approximation factor $3 \cdot 2^{m-1}-1$

We present an $O(n k)$-time 3-approximation algorithm for fair k-centers

Our Approach

Overview

A high-level overview of the algorithm is as follows:

- Obtain k initial (unfair) centers, using Gonzalez

Our Approach

A high-level overview of the algorithm is as follows:

- Obtain k initial (unfair) centers, using Gonzalez
- Find the largest prefix of these which can be "shifted fairly"

Our Approach

A high-level overview of the algorithm is as follows:

- Obtain k initial (unfair) centers, using Gonzalez
- Find the largest prefix of these which can be "shifted fairly"
- Shift these centers, choose the rest arbitrarily

Our Approach

A high-level overview of the algorithm is as follows:

- Obtain k initial (unfair) centers, using Gonzalez
- Find the largest prefix of these which can be "shifted fairly"
- Shift these centers, choose the rest arbitrarily

The first step is well-defined, how do we accomplish the second and third steps?

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

- Draw balls of radius r around the centers

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

- Draw balls of radius r around the centers
- Reduce to matching:

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

- Draw balls of radius r around the centers
- Reduce to matching:
- Each point in P gets one point in partition A

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

- Draw balls of radius r around the centers
- Reduce to matching:
- Each point in P gets one point in partition A
- Each demographic group gets k_{i} points in partition B

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

- Draw balls of radius r around the centers
- Reduce to matching:
- Each point in P gets one point in partition A
- Each demographic group gets k_{i} points in partition B
- $a b \in E$ iff point a (in P) has demographic group b in its ball (including a itself)

Our Approach

Fair Shift Constraint

Fair Shift - replacing each point with a "neighbor" such that the new set is fair
Does a fair shift exist within radius r for some set of points P ?

- Draw balls of radius r around the centers
- Reduce to matching:
- Each point in P gets one point in partition A
- Each demographic group gets k_{i} points in partition B
- $a b \in E$ iff point a (in P) has demographic group b in its ball (including a itself)
- Edges in match of size $|P|$ give a fair shift iff one exists

Our Approach

Optimizing the Algorithm

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition B gets 1 point per demographic group.

Our Approach

Optimizing the Algorithm

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition B gets 1 point per demographic group.
- Add edges from s to Partition A with capacity 1 and from Partition B to t with capacity k_{i}.

Our Approach

Optimizing the Algorithm

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition B gets 1 point per demographic group.
- Add edges from s to Partition A with capacity 1 and from Partition B to t with capacity k_{i}.
- Now, each point in S yields at most 1 edge $a b \in E$ so

$$
|E| \leq n+O(k)=O(n) \text { and }|V|=2+2 k+m=O(k)
$$

Our Approach

Optimizing the Algorithm

For runtime, it is more efficient to view this as a maximum flow problem:

- Partition B gets 1 point per demographic group.
- Add edges from s to Partition A with capacity 1 and from Partition B to t with capacity k_{i}.
- Now, each point in S yields at most 1 edge $a b \in E$ so

$$
|E| \leq n+O(k)=O(n) \text { and }|V|=2+2 k+m=O(k)
$$

$\Rightarrow O\left(n k^{1 / 2}\right)$ time to check for a fair shift, using Dinitz's algorithm.

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift
- binary search over k initial centers

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift
- binary search over k initial centers
- r is maximized such that balls are non-overlapping.

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift
- binary search over k initial centers
- r is maximized such that balls are non-overlapping.
- Optimizing the shift radius on largest prefix

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift
- binary search over k initial centers
- r is maximized such that balls are non-overlapping.
- Optimizing the shift radius on largest prefix
- binary search over discrete shift radii as r

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift
- binary search over k initial centers
- r is maximized such that balls are non-overlapping.
- Optimizing the shift radius on largest prefix
- binary search over discrete shift radii as r
- at most $k m \leq k^{2}$ such values, so $\log k$ levels

Our Approach

Optimizing the Algorithm

$O\left(n k^{1 / 2}\right)$ time to check for a fair shift
\Rightarrow Use binary search, checking fair shift at each level

- Largest prefix of initial centers with a fair shift
- binary search over k initial centers
- r is maximized such that balls are non-overlapping.
- Optimizing the shift radius on largest prefix
- binary search over discrete shift radii as r
- at most $k m \leq k^{2}$ such values, so $\log k$ levels
$O(n k)$ time total to build all the graphs, so each binary search has time complexity $O\left(n k+n k^{1 / 2} \log k\right)=O(n k)$.

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

- fair shift costs no more than $\operatorname{cost}_{O P T}$

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

- fair shift costs no more than cost ${ }_{O P T}$
- largest prefix with a fair shift has objective cost at most $2 \cdot$ cost $_{O P T}$

Our Approach

Analysis

Therefore, it takes $O(n k)$ time each to

- run Gonzalez's algorithm
- find the largest prefix of initial centers
- optimize the fair shift
- heuristically fill the remaining centers (similar to Gonzalez)

For performance,

- fair shift costs no more than cost ${ }_{O P T}$
- largest prefix with a fair shift has objective cost at most $2 \cdot$ cost $_{O P T}$
$\Rightarrow 3$-approximation algorithm with $O(n k)$ runtime.

Experiments
 Overview

We compared the following methods with Kleindessner et al.:

- Alg 2-Seq - our fair k-centers algorithm, arbitrarily picks centers at the last step
- Alg 2-Heu B - our fair k-centers algorithm, uses Heuristic B at the last step.
- Heuristic A - runs Gonzalez for each demographic group i.
- Heuristic B - runs Gonzalez but only keep centers that don't violate fairness.
- Heuristic C - similar to A, but use distance to centers from all demographic groups.

Experiments

Simulated Data

Figure: Mean runtime in seconds on simulated data

Experiments

Simulated Data

Table: Mean and standard deviation of objective value on simulated data

Task	50 Groups	100 Groups	250 Groups	500 Groups
Algo				
Alg 2-Seq	$\mathbf{6 . 8 9 (0 . 2)}$	$6.52(0.31)$	$\mathbf{6 . 5 (0 . 4 1)}$	$6.46(0.38)$
Alg 2-Heu B	$6.91(0.26)$	$\mathbf{6 . 4 8}(\mathbf{0 . 2 5})$	$6.51(0.43)$	$\mathbf{6 . 4 4}(\mathbf{0 . 3 8)}$
Kleindessner et al.	$7.01(0.46)$	$6.88(0.75)$	$7.45(0.78)$	$7.26(0.51)$
Heuristic A	$21.38(2.84)$	$17.7(1.55)$	$16.61(1.57)$	$13.87(1.33)$
Heuristic B	$7.66(1.09)$	$8.16(0.94)$	$7.81(0.71)$	$7.8(0.62)$
Heuristic C	$7.26(1.17)$	$7.43(0.87)$	$7.44(0.6)$	$7.42(0.62)$

Experiments

Real Data

Figure: Adult dataset runtime

Experiments

Real Data

Figure: Student and wholesale dataset runtime

Experiments
 Real Data

Table: Mean and standard deviation of objective value on real data

Algo	A-Gender	A-Race	S-Sex	S-School	S-Address	W-Location
Alg 2-Seq						$1.31(0.05)$
Alg 2-Heu B	$\mathbf{0 . 3 2 (0 . 0 1)}$	$\mathbf{0 . 3 2 (0 . 0 1)}$	$\mathbf{1 . 2 8 (0 . 0 3)}$	$\mathbf{1 . 2 8 (0 . 0 4)}$	$\mathbf{1 . 3 (0 . 0 4)}$	$0.26(0.01)$
Kleindessner et al.	$0.36(0.03)$	$0.34(0.02)$	$1.29(0.05)$	$1.29(0.06)$	$\mathbf{1 . 3 (0 . 0 5)}$	$0.27(0.03)$
Heuristic A	$0.41(0.02)$	$0.35(0.03)$	$1.36(0.02)$	$1.39(0.04)$	$1.37(0.04)$	$0.28(0.01)$
Heuristic B	$0.37(0.02)$	$\mathbf{0 . 3 2 (0 . 0 1)}$	$1.29(0.03)$	$1.3(0.04)$	$\mathbf{1 . 3 (0 . 0 4)}$	$0.27(0.01)$
Heuristic C	$0.4(0.02)$	$\mathbf{0 . 3 2 (\mathbf { 0 . 0 2) }}$	$1.29(0.03)$	$1.29(0.02)$	$1.35(0.05)$	$\mathbf{0 . 2 4 (0 . 0 2)}$

Summary

Our Algorithm:

- 3-approximation
- O(nk) runtime
- Best algorithm in both runtime and performance
- Experimental support

