

Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization

Vien V. Mai and Mikael Johansson KTH - Royal Institute of Technology

Stochastic optimization

Stochastic optimization problem:

$$\underset{x \in \mathcal{X}}{\text{minimize } f(x)} := \mathbb{E}_{P}[f(x;S)] = \int_{\mathcal{S}} f(x;s) dP(s)$$

Stochastic gradient descent (SGD):

$$x_{k+1} = x_k - \alpha_k g_k, \qquad g_k \in \partial f(x_k, S_k)$$

SGD with momentum:

$$x_{k+1} = x_k - \alpha_k z_k, \qquad z_{k+1} = \beta_k g_{k+1} + (1 - \beta_k) z_k$$

Includes Polyak's Heavy ball, Nesterov's fast gradient, and more

- widespread empirical success
- theory less clear than deterministic counterpart

Stochastic optimization: sample complexity

For SGD, sample complexity is known under various assumptions

- convexity [Nemirovski et al., 2009]
- smoothness [Ghadimi-Lan, 2013]
- weak convexity [Davis-Drusvyatskiy, 2019]

Much less is known for momentum-based methods

- constrained
- non-smooth non-convex

Our contributions

Novel Lyapunov analysis for (projected) stochastic heavy ball (SHB):

- sample complexity of SHB for stochastic weakly convex minimization
- analyze smooth non-convex case under less restrictive assumptions

Outline

- Background and motivation
- SHB for non-smooth non-convex optimization
- Sharper results for smooth non-convex optimization
- Numerical examples
- Summary and conclusions

Problem formulation

Problem:

$$\underset{x \in \mathcal{X}}{\text{minimize } f(x)} := \mathbb{E}_P[f(x;S)] = \int_{\mathcal{S}} f(x;s) dP(s)$$

 ${\mathcal X}$ is closed and convex; f is $\rho\text{-weakly convex},$ meaning that

 $x\mapsto f(x)+\rho\left\|x\right\|_2^2\;\;\text{is convex}.$

Easy to recognize, e.g., convex compositions

$$f(x) = h(c(x))$$

h convex and L_h -Lipschitz; c smooth with L_c -Lipschitz Jacobian ($\rho = L_h L_c$)

Algorithm

Consider

$$\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x) := \mathbb{E}_{P}[f(x; S)] = \int_{\mathcal{S}} f(x; s) dP(s)$$

Algorithm:

$$x_{k+1} = \operatorname*{argmin}_{x \in \mathcal{X}} \left\{ \langle z_k, x - x_k \rangle + \frac{1}{2\alpha} \| x - x_k \|_2^2 \right\}$$
$$z_{k+1} = \beta g_{k+1} + (1-\beta) \frac{x_k - x_{k+1}}{\alpha}$$

Recovers SHB when $\mathcal{X} = \mathbb{R}^n$; setting $\beta = 1$ gives (projected) SGD

Goal: establish sample complexity

Roadmap and challenges

Most complexity results for subgradient-based methods rely on forming:

$$\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] - \alpha \,\mathbb{E}[e_k] + \alpha^2 C^2$$

Immediately yields $O(1/\epsilon^2)$ complexity for $\mathbb{E}[e_k]$

Stationarity measure:

- $f \text{ convex} \implies e_k = f(x_k) f(x^*); \quad f \text{ smooth} \implies e_k = \|\nabla f(x_k)\|_2^2$
- f weakly convex $\implies e_k = \|\nabla F_\lambda(x_k)\|_2^2$

Lyapunov analysis (for SGD):

•
$$f \text{ convex} \Longrightarrow V_k = \|x_k - x^\star\|_2^2$$

- $f \text{ smooth} \Longrightarrow V_k = f(x_k)$
- f weakly convex $\Longrightarrow V_k = F_\lambda(x_k)$

[Shor, 1964] [Ghadimi-Lan, 2013] [Davis-Drusvyatskiy, 2019]

Moreau envelope

$$F_{\lambda}(x) = \inf_{y} \left\{ F(y) + \frac{1}{2\lambda} \left\| x - y \right\|_{2}^{2} \right\}$$

Proximal mapping

$$\hat{x} := \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ F(y) + \frac{1}{2\lambda} \left\| x - y \right\|_2^2 \right\}$$

Connection to near-stationarity

$$\begin{cases} \lambda^{-1}(x - \hat{x}) = \nabla F_{\lambda}(x) \\ \operatorname{dist}(0, \partial F(\hat{x})) \le \|\nabla F_{\lambda}(x)\|_{2} \end{cases}$$

Small $\|\nabla F_{\lambda}(x)\|_{2} \Longrightarrow x$ close to a near-stationary point

V. V. Mai (KTH)

ICML-2020

Lyapunov analysis for SHB

Recall that we wanted

$$\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] - \alpha \,\mathbb{E}[e_k] + \alpha^2 C^2$$

SGD works with $e_k = \|\nabla F_\lambda(x_k)\|_2^2$ and $V_k = F_\lambda(x_k)$

It seems natural to take $e_k = \|\nabla F_\lambda(\cdot)\|_2^2$

Two questions:

- at which point should we evaluate $\nabla F_{\lambda}(\cdot)$?
- can we find a corresponding Lyapunov function V_k?

Lyapunov analysis for SHB

Our approach: Take $\nabla F_{\lambda}(\cdot)$ at the following iterate

$$\bar{x}_k := x_k + \frac{1-\beta}{\beta} \left(x_k - x_{k-1} \right)$$

Define the corresponding proximal point

$$\hat{x}_{k} = \operatorname*{argmin}_{y \in \mathbb{R}^{n}} \left\{ F(y) + \frac{1}{2\lambda} \left\| y - \bar{x}_{k} \right\|_{2}^{2} \right\}$$

This gives

$$e_k = \nabla F_\lambda(\bar{x}_k) = \lambda^{-1}(\bar{x}_k - \hat{x}_k)$$

Lyapunov analysis for SHB

Let $\beta = \nu \alpha$ so that $\beta \in (0,1]$ and define $\xi = (1 - \beta)/\nu$.

Consider the function:

$$V_{k} = F_{\lambda}(\bar{x}_{k}) + \frac{\nu\xi^{2}}{4\lambda^{2}} \|p_{k}\|_{2}^{2} + \frac{\alpha\xi^{2}}{2\lambda^{2}} \|d_{k}\|_{2}^{2} + \left(\frac{(1-\beta)\xi^{2}}{2\lambda^{2}} + \frac{\xi}{\lambda}\right) f(x_{k-1}),$$

where

$$p_k = \frac{1-eta}{eta} \left(x_k - x_{k-1}
ight)$$
 and $d_k = \left(x_{k-1} - x_k
ight) / lpha.$

Theorem: For any $k \in \mathbb{N}$, it holds that

$$\mathbb{E}\left[V_{k+1}\right] \le \mathbb{E}\left[V_k\right] - \frac{\alpha}{2} \mathbb{E}\left[\left\|\nabla F_{\lambda}(\bar{x}_k)\right\|_2^2\right] + \frac{\alpha^2 C L^2}{2\lambda}.$$

Main result: sample complexity

Taking
$$\alpha = \alpha_0 / \sqrt{K}$$
 and $\beta = O(1/\sqrt{K}) \in (0,1]$ yields
$$\mathbb{E}\left[\left\| \nabla F_{1/(2\rho)}(\bar{x}_{k^*}) \right\|_2^2 \right] \le O\left(\frac{\rho \Delta + L^2}{\sqrt{K+1}}\right)$$

 $\Delta = f(x_0) - \inf_{x \in \mathcal{X}} f(x)$

Note:

- same worst-case complexity as SGD ($\beta = 1$)
- β can be as small as $O(1/\sqrt{K})$
- (much) more weight to the momentum term than the fresh subgradient

This rate is, in general, not possible to improve [Arjevani et al., 2019].

Outline

- Background and motivation
- SHB for non-smooth non-convex optimization
- Sharper results for smooth non-convex optimization
- Numerical examples
- Summary and conclusions

Problem:

$$\underset{x \in \mathcal{X}}{\text{minimize } f(x)} := \mathbb{E}_P[f(x;S)] = \int_{\mathcal{S}} f(x;s) dP(s)$$

 ${\mathcal X}$ is closed and convex; f is $\rho\text{-}{\bf smooth}$:

$$\|\nabla f(x) - \nabla f(x)\|_2 \le \rho \|x - y\|_2, \ \forall x, y \in \operatorname{dom} f.$$

Assumption. There exists a real $\sigma > 0$ such that for all $x \in \mathcal{X}$:

$$\mathbb{E}\left[\left\|f'(x,S) - \nabla f(x)\right\|_{2}^{2}\right] \leq \sigma^{2}.$$

Note.

- complexity of SHB is not known (even for deterministic case)
- when $\mathcal{X}=\mathbb{R}^n$, $O(1/\epsilon^2)$ obtained under bounded gradients assumption [Yan et al., 2018]

Constrained case:

Suppose that $\|\nabla f(x)\|_2 \leq G$ for all $x \in \mathcal{X}$. If we set $\alpha = \frac{\alpha_0}{\sqrt{K+1}}$, then

$$\mathbb{E}\left[\left\|\nabla F_{\lambda}(\bar{x}_{k^*})\right\|_2^2\right] \le O\left(\frac{\rho\Delta + \sigma^2 + G^2}{\sqrt{K+1}}\right).$$

Unconstrained case:

If we set
$$\alpha = \frac{\alpha_0}{\sqrt{K+1}}$$
 with $\alpha_0 \in (0, 1/(4\rho)]$, then
$$\mathbb{E}\left[\|\nabla F_\lambda(\bar{x}_{k^*})\|_2^2 \right] \le O\left(\frac{\left(1+8\rho^2\alpha_0^2\right)\Delta + (\rho+16\alpha_0\rho^2)\sigma^2\alpha_0^3}{\alpha_0\sqrt{K+1}}\right).$$

Experiments: convergence behavior on phase retrieval

Figure: Function gap vs. #iters for phase retrieval with $p_{\text{fail}} = 0.2$, $\beta = 10/\sqrt{K}$.

Exponential growth before eventual convergence¹ not shown SGD is competitive if well-tuned, but sensitive to stepsize choice

¹observed also in [Asi-Duchi, 2019]

Experiments: sensitivity to initial stepsize

Figure: #epochs to achieve ϵ -accuracy vs. initial stepsize α_0 with $\kappa = 10$.

Experiments: popular momentum parameter

(a) $1 - \beta = 0.9$ (b) $1 - \beta = 0.99$

Figure: #epochs to achieve ϵ -accuracy vs. initial stepsize α_0 with $\kappa = 10$.

Conclusion

 SGD with momentum

- simple modifications to SGD
- good performance and less sensitive to algorithm parameters

Novel Lyapunov analysis

- sample complexity of SHB for weakly convex and constrained optim.
- improved rates on smooth and non-convex problems