Meta-Learning with Shared Amortized Variational Inference

Ekaterina Iakovleva

Inria

Jakob Verbeek

Facebook

Karteek Alahari

Inria

Innia FACEBOOK AI

ICML 2020

Thirty-seventh International Conference on Machine Learning

Overview

- This work focuses on the empirical Bayes meta-learning approach.
- We propose a novel scheme for amortized variational inference.
- We demonstrate that earlier work based on Monte-Carlo approximation underestimates model variance.
- We show the advantage of our approach on miniImageNet and FC100.

FACEBOOK AI

Meta-learning classification task definition

- K shot N way classification task
- Episodic training: each task t is sampled from a distribution over tasks p(T)

• Support data $D^{t} = \{(x_{k,n}^{t}, y_{k,n}^{t})\}_{k,n=1}^{K,N}$

• Query data $\widetilde{D}^t = \left\{ (\widetilde{x}_{m,n}^t, \widetilde{y}_{m,n}^t) \right\}_{m,n=1}^{M,N}$

FACEBOOK AI

Meta-learning approaches

Distance-based classifiers

Learned metric relies on the distance to individual samples or class prototypes.
 E.g. Prototypical Networks [1], Matching Nets [2].

[1] – Snell et al. NeurIPS'17, [2] – Vinyals et al. NeurIPS'16

FACEBOOK AI

Meta-learning approaches

Distance-based classifiers

Learned metric relies on the distance to individual samples or class prototypes.
E.g. Prototypical Networks [1], Matching Nets [2].

Optimization-based approaches

Vanilla SGD approach is replaced by a trainable update mechanism.
 E.g. MAML [3], Meta LSTM [4].

[1] – Snell et al. NeurIPS'17, [2] – Vinyals et al. NeurIPS'16, [3] – Finn et al. ICML'17, [4] – Ravi & Larochelle ICLR'17

FACEBOOK AI

Meta-learning approaches

Distance-based classifiers

Learned metric relies on the distance to individual samples or class prototypes.
E.g. Prototypical Networks [1], Matching Nets [2].

Optimization-based approaches

Vanilla SGD approach is replaced by a trainable update mechanism.
E.g. MAML [3], Meta LSTM [4].

• Latent variable models

The model parameters are treated as latent variables.

- Their variance is explicitly modeled in a Bayesian framework.
- ✤ E.g. Neural Processes [5], VERSA [6].

[1] - Snell et al. NeurIPS'17, [2] - Vinyals et al. NeurIPS'16, [3] - Finn et al. ICML'17, [4] - Ravi & Larochelle ICLR'17,
 [5] - Garnelo et al. ICML'18, [6] - Gordon et al. ICLR'19

FACEBOOK AI

The multi-task graphical model includes:

- task-agnostic parameters θ
- task-specific latent parameters $\{w^t\}_{t=1}^T$

FACEBOOK AI

KN

т

MN

 $\tilde{x}_{m,n}^t$

 $x_{k,n}^t$

 $y_{k,n}^{t}$

 $\tilde{y}_{m,n}^t$

The multi-task graphical model includes:

- task-agnostic parameters θ
- task-specific latent parameters $\{w^t\}_{t=1}^T$

Marginal likelihood of the query labels $\tilde{Y} = {\{\tilde{Y}^t\}_{t=1}^T \text{ given query}}$ samples $\tilde{X} = {\{\tilde{X}^t\}_{t=1}^T \text{ and the support sets } D = {\{D^t\}_{t=1}^T = \{(X^t, Y^t)\}_t^T$ $p(\tilde{Y}|\tilde{X}, D, \theta) = \prod_{t=1}^T \int p(\tilde{Y}|\tilde{X}, w^t) p_{\phi}(w^t|D^t, \theta) dw^t$

Intractable integral requires approximation for training and prediction.

FACEBOOK AI

ICML

KN

т

MN

 $\tilde{x}_{m,n}^t$

 $x_{k,n}^t$

 $y_{k,n}^{t}$

 $\tilde{y}_{m,n}^t$

The multi-task graphical model includes:

- task-agnostic parameters θ
- task-specific latent parameters $\{w^t\}_{t=1}^T$

Marginal likelihood of the query labels $\tilde{Y} = {\{\tilde{Y}^t\}_{t=1}^T \text{ given query}}$ samples $\tilde{X} = {\{\tilde{X}^t\}_{t=1}^T \text{ and the support sets } D = {\{D^t\}_{t=1}^T = \{(X^t, Y^t)\}_t^T$ $p(\tilde{Y}|\tilde{X}, D, \theta) = \prod_{t=1}^T \int p(\tilde{Y}|\tilde{X}, w^t) p_{\phi}(w^t|D^t, \theta) dw^t$

Intractable integral requires approximation for training and prediction.

FACEBOOK AI

ICML

KN

т

MN

 $\tilde{x}_{m,n}^t$

 $x_{k,n}^t$

 $y_{k,n}^{t}$

 $\tilde{y}_{m,n}^t$

The multi-task graphical model includes:

- task-agnostic parameters θ
- task-specific latent parameters $\{w^t\}_{t=1}^T$

Marginal likelihood of the query labels $\tilde{Y} = {\{\tilde{Y}^t\}_{t=1}^T \text{ given query}}$ samples $\tilde{X} = {\{\tilde{X}^t\}_{t=1}^T \text{ and the support sets } D = {\{D^t\}_{t=1}^T = \{(X^t, Y^t)\}_t^T$ $p(\tilde{Y}|\tilde{X}, D, \theta) = \prod_{t=1}^T \int p(\tilde{Y}|\tilde{X}, w^t) p_{\phi}(w^t|D^t, \theta) dw^t$

Intractable integral requires approximation for training and prediction.

FACEBOOK AI

ICML

Monte Carlo approximation

• Monte Carlo approximation of the marginal log-likelihood using $w_l^t \sim p_{\phi}(w^t | D^t, \theta)$:

$$\log p\left(\tilde{Y}^t \middle| \tilde{X}^t, D^t, \theta\right) \approx \frac{1}{TM} \sum_{t=1}^T \sum_{m=1}^M \log \frac{1}{L} \sum_{l=1}^L p(\tilde{y}_m^t \middle| \tilde{x}_m^t, w_l^t).$$

• This objective function has been used in VERSA [1].

• Our experiments show that this approach learns degenerate prior $p_{\phi}(w^t|D^t,\theta)$.

FACEBOOK AI

• Variational evidence lower bound (ELBO) with the amortized approximate posterior [1] parameterized by ψ :

$$\log p(\tilde{Y}^t | \tilde{X}^t, D^t, \theta) \ge \mathbb{E}_{q_{\psi}} [\log p(\tilde{Y}^t | \tilde{X}^t, w^t)] - \mathcal{D}_{KL} (q_{\psi}(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta) || p_{\phi}(w^t | D^t, \theta))$$

FACEBOOK AI

• Variational evidence lower bound (ELBO) with the amortized approximate posterior [1] parameterized by ψ :

$$\log p(\tilde{Y}^{t}|\tilde{X}^{t}, D^{t}, \theta) \geq \mathbb{E}_{q_{\psi}} [\log p(\tilde{Y}^{t}|\tilde{X}^{t}, w^{t})] - \mathcal{D}_{KL} (q_{\psi}(w^{t}|\tilde{Y}^{t}, \tilde{X}^{t}, D^{t}, \theta) || p_{\phi}(w^{t}|D^{t}, \theta))$$
Reconstruction loss

FACEBOOK AI

• Variational evidence lower bound (ELBO) with the amortized approximate posterior [1] parameterized by ψ :

$$\log p(\tilde{Y}^t | \tilde{X}^t, D^t, \theta) \ge \mathbb{E}_{q_{\psi}} [\log p(\tilde{Y}^t | \tilde{X}^t, w^t)] - \mathcal{D}_{KL} (q_{\psi}(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta) || p_{\phi}(w^t | D^t, \theta))$$

Regularization

FACEBOOK AI

• Variational evidence lower bound (ELBO) with the amortized approximate posterior [1] parameterized by ψ :

 $\log p(\tilde{Y}^t | \tilde{X}^t, D^t, \theta) \ge \mathbb{E}_{q_{\psi}} [\log p(\tilde{Y}^t | \tilde{X}^t, w^t)] - \beta \mathcal{D}_{KL} (q_{\psi}(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta) || p_{\phi}(w^t | D^t, \theta))$

• We use regularization coefficient β [2] to weight KL term.

[1] – Kingma & Welling ICLR'14, [2] – Higgins et al. ICLR'17

FACEBOOK AI

• Variational evidence lower bound (ELBO) with the amortized approximate posterior [1] parameterized by ψ :

 $\log p(\tilde{Y}^t | \tilde{X}^t, D^t, \theta) \ge \mathbb{E}_{q_{\psi}} [\log p(\tilde{Y}^t | \tilde{X}^t, w^t)] - \beta \mathcal{D}_{KL} (q_{\psi}(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta) || p_{\phi}(w^t | D^t, \theta))$

- We use regularization coefficient β [2] to weight KL term.
- Predictions are made via Monte Carlo sampling from the learned prior:

$$p(\tilde{y}_m^t | \tilde{x}_m^t, D^t, \theta) \approx \frac{1}{L} \sum_{l=1}^{L} p(\tilde{y}_m^t | \tilde{x}_m^t, w_l^t), \quad \text{where } w_l^t \sim p_\phi(w^t | D^t, \theta).$$

[1] – Kingma & Welling ICLR'14, [2] – Higgins et al. ICLR'17

FACEBOOK AI

Shared amortized variational inference: SAMOVAR

• Both prior and posterior are conditioned on labeled sets.

$$\log p\big(\tilde{Y}^t | \tilde{X}^t, D^t, \theta\big) \ge \mathbb{E}_{\boldsymbol{q_\phi}} \Big[\log p\big(\tilde{Y}^t | \tilde{X}^t, w^t\big)\Big] - \beta \mathcal{D}_{KL} \Big(\boldsymbol{q_\psi}\big(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta\big) || \boldsymbol{p_\phi}(w^t | D^t, \theta)\Big)$$

FACEBOOK AI

Shared amortized variational inference: SAMOVAR

- Both prior and posterior are conditioned on labeled sets.
- The inference network can be shared between prior and posterior.

 $\log p(\tilde{Y}^t | \tilde{X}^t, D^t, \theta) \ge \mathbb{E}_{\boldsymbol{q_\phi}} \left[\log p(\tilde{Y}^t | \tilde{X}^t, w^t) \right] - \beta \mathcal{D}_{KL} \left(\boldsymbol{q_\phi} \left(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta \right) || \boldsymbol{p_\phi} \left(w^t | D^t, \theta \right) \right)$

FACEBOOK AI

Shared amortized variational inference: SAMOVAR

- Both prior and posterior are conditioned on labeled sets.
- The inference network can be shared between prior and posterior.

 $\log p(\tilde{Y}^t | \tilde{X}^t, D^t, \theta) \ge \mathbb{E}_{\boldsymbol{q_\phi}} \left[\log p(\tilde{Y}^t | \tilde{X}^t, w^t) \right] - \beta \mathcal{D}_{KL} \left(\boldsymbol{q_\phi} \left(w^t | \tilde{Y}^t, \tilde{X}^t, D^t, \theta \right) || \boldsymbol{p_\phi} \left(w^t | D^t, \theta \right) \right)$

• Sharing reduces memory footprint, and encourages learning non-degenerate prior.

FACEBOOK AI

SAMOVAR design based on VERSA

- **Task-agnostic feature extractor** f_{θ} produces embeddings of the input images x.
- **Task-specific linear classifier** w^t predicts labels for query samples \tilde{x} :

 $p(\tilde{y}_m^t | \tilde{x}_m^t, w^t) = \operatorname{softmax}(w^t f_\theta(\tilde{x}_m^t)).$

• Shared amortized inference network g_{ϕ} returns the parameters $\{\mu_n^t, \sigma_n^t\}$ of a Gaussian over weight vector w_n^t for each class n:

 $p(w_n^t | D^t, \theta) = \mathcal{N}(\mu_n^t, \operatorname{diag}(\sigma_n^t)),$

where
$$\binom{\mu_n^t}{\sigma_n^t} = g_{\phi} \left(\frac{1}{K} \sum_{k=1}^K f_{\theta}(x_{k,n}^t) \right)$$

VERSA – Gordon et al. ICLR'19

Université Grenoble Alpes

FACEBOOK AI

Improved architectural design based on TADAM

• Scaled cosine similarity (-SC).

The linear classifier is replaced with the cosine similarity classifier scaled with α .

• Task encoding network (-TEN).

TEN provides task-conditioned batch norm parameters for feature maps in f_{θ} .

• Auxiliary co-training (-AT).

 f_{θ} is shared with an auxiliary classification task across all meta-train classes.

TADAM – Oreshkin et al. NeurIPS'18

FACEBOOK AI

Experiments: synthetic task

- Hierarchical generative process: $p(w^t) = \mathcal{N}(0, 1)$, and $p(y^t|w^t) = \mathcal{N}(w^t, \sigma_y^2)$.
- T = 250 sampled tasks, K = 5 support observations $D^t = \{y_k^t\}_{k=1}^K$ and M = 15 query observations $\tilde{D}^t = \{\tilde{y}_m^t\}_{k=1}^M$.
- Posterior over latent variable $q_{\phi}(w^t | D^t) = \mathcal{N}(\mu_q, \sigma_q^2)$.
- Parameters of the posterior are obtained via inference network with parameters ϕ :

$$\binom{\mu_q}{\log \sigma_q^2} = \phi_1 \sum_{k=1}^K y_k^t + \phi_2$$

FACEBOOK AI

Results: synthetic task

- Exact marginal log-likelihood $\log p(\tilde{D}^t | D^t)$.
- Monte Carlo estimation of $\log p(\tilde{D}^t | D^t)$ with *L* samples from the prior.
- Variational inference for $\log p(\tilde{D}^t | D^t)$ with *L* samples from the posteror.

Monte Carlo requires large sample sets compared to variational inference.

Université Grenoble Alpes

FACEBOOK AI

Experimental setup for real data

- 5-shot and 1-shot, 5-way classification tasks.
- Test data contains 15 query samples per class.
- Evaluation is performed on 5,000 randomly sampled tasks.
- We report the mean accuracy over these tasks, and 95% confidence intervals.

FACEBOOK AI

Comparison with VERSA on miniImageNet

- SAMOVAR-base and VERSA train the same meta-learning model.
- SAMOVAR with separate prior and posterior is inferior to other models.
- SAMOVAR is comparable with VERSA on 1-shot task, and outperforms it on 5-shot task.

	5-shot	1-shot
VERSA (OUR IMPLEM.) SAMOVAR-BASE SAMOVAR-BASE (SEPARATE)	$\begin{array}{c} 67.97 \pm 0.23 \\ 69.86 \pm 0.23 \\ 66.60 \pm 0.23 \end{array}$	$\begin{array}{c} 52.45 \pm 0.30 \\ 52.36 \pm 0.29 \\ 50.80 \pm 0.29 \end{array}$

VERSA – Gordon et al. ICLR'19

Université Grenoble Alpes

FACEBOOK AI

Comparison with VERSA on miniImageNet

- SAMOVAR-base and VERSA train the same meta-learning model.
- SAMOVAR with separate prior and posterior is inferior to other models.
- SAMOVAR is comparable with VERSA on 1-shot task, and outperforms it on 5-shot task.

	5-shot	1-shot
VERSA (OUR IMPLEM.)	67.97 ± 0.23	52.45 ± 0.30
SAMOVAR-BASE SAMOVAR-BASE (SEPARATE)	$\begin{array}{c} 69.86 \pm 0.23 \\ 66.60 \pm 0.23 \end{array}$	$\begin{array}{c} 52.36 \pm 0.29 \\ 50.80 \pm 0.29 \end{array}$

VERSA – Gordon et al. ICLR'19

Université Grenoble Alpes

FACEBOOK AI

Comparison with VERSA on miniImageNet

- SAMOVAR-base and VERSA train the same meta-learning model.
- SAMOVAR with separate prior and posterior is inferior to other models.
- SAMOVAR is comparable with VERSA on 1-shot task, and outperforms it on 5-shot task.

	5-shot	1-shot
VERSA (OUR IMPLEM.)	67.97 ± 0.23	52.45 ± 0.30 52.36 ± 0.20
SAMOVAR-BASE SAMOVAR-BASE (SEPARATE)	$ \begin{array}{r} 69.80 \pm 0.23 \\ 66.60 \pm 0.23 \end{array} $	52.30 ± 0.29 50.80 ± 0.29

VERSA – Gordon et al. ICLR'19

Université Grenoble Alpes

FACEBOOK AI

Comparison with TADAM on miniImageNet

- Both models are trained with auxiliary co-training.
- SAMOVAR consistently improves TADAM across all ablations.

 α : cosine scaling, AT: auxiliary co-training, TEN: task embedding network

			5-shot		1-shot	
lpha	AT	TEN	TADAM	SAMOVAR	TADAM	SAMOVAR
			74.5 ± 0.2	75.2 ± 0.2	56.5 ± 0.4	59.2 ± 0.3
\checkmark	\checkmark		75.6 ± 0.4	77.4 ± 0.2	58.0 ± 0.3	60.4 ± 0.3
\checkmark	\checkmark	\checkmark	76.7 ± 0.3	77.9 ± 0.2	58.5 ± 0.3	60.8 ± 0.3

Additional ablations can be found in the paper.

TADAM – Oreshkin et al. NeurIPS'18

FACEBOOK AI

Comparison with TADAM on miniImageNet

- Both models are trained with auxiliary co-training.
- SAMOVAR consistently improves TADAM across all ablations.

 α : cosine scaling, AT: auxiliary co-training, TEN: task embedding network

			5-shot		1-SHOT	
α	AT	TEN	TADAM	SAMOVAR	TADAM	SAMOVAR
			74.5 ± 0.2	75.2 ± 0.2	56.5 ± 0.4	59.2 ± 0.3
\checkmark	\checkmark		75.6 ± 0.4	77.4 ± 0.2	58.0 ± 0.3	60.4 ± 0.3
\checkmark	\checkmark	\checkmark	76.7 ± 0.3	77.9 ± 0.2	58.5 ± 0.3	60.8 ± 0.3

Additional ablations can be found in the paper.

TADAM – Oreshkin et al. NeurIPS'18

FACEBOOK AI

Comparison with state of the art on miniImageNet

- SAMOVAR demonstrates competitive results with and without data augmentation.
- SAMOVAR is complementary to approaches like CTM [Li et al. CVPR'19] or [Gidaris et al. ICCV'19]
 - METHOD **FEATURES** 5-SHOT 1-SHOT WITHOUT DATA AUGMENTATION 61.20 ± 1.80 MTL (SUN ET AL., 2019) 75.50 ± 0.80 **RESNET-12** TADAM (ORESHKIN ET AL., 2018) **RESNET-12** 76.70 ± 0.30 58.50 ± 0.30 **SAMOVAR-SC-AT-TEN (OURS) RESNET-12** $\textbf{77.89} \pm \textbf{0.23}$ $\textbf{60.76} \pm \textbf{0.29}$ WITH DATA AUGMENTATION 78.63 ± 0.46 62.64 ± 0.61 METAOPTNET-SVM (LEE ET AL., 2019) **RESNET-12** WRN-28-10[†] 79.20 ± 0.40 SIB (HU ET AL., 2020) 70.00 ± 0.60 **SAMOVAR-SC-AT-TEN (OURS) RESNET-12** $\textbf{79.85} \pm \textbf{0.20}$ $\mathbf{62.33} \pm \mathbf{0.28}$ (GIDARIS ET AL., 2019) WRN-28-10 79.87 ± 0.33 62.93 ± 0.45 **ResNet-18**[†] 80.51 ± 0.13 64.12 ± 0.82 CTM (LI ET AL., 2019) (DVORNIK ET AL., 2019) WRN-28-10 80.63 ± 0.42 63.06 ± 0.61
 - †: Transductive methods.

FACEBOOK AI

ICML | 2020

Comparison with state of the art on miniImageNet

- SAMOVAR demonstrates competitive results with and without data augmentation.
- SAMOVAR is complementary to approaches like CTM [Li et al. CVPR'19] or [Gidaris et al. ICCV'19]
 - METHOD **FEATURES** 5-SHOT 1-SHOT WITHOUT DATA AUGMENTATION 61.20 ± 1.80 MTL (SUN ET AL., 2019) 75.50 ± 0.80 **RESNET-12** TADAM (ORESHKIN ET AL., 2018) **RESNET-12** 76.70 ± 0.30 58.50 ± 0.30 **SAMOVAR-SC-AT-TEN (OURS) RESNET-12** $\textbf{77.89} \pm \textbf{0.23}$ 60.76 ± 0.29 WITH DATA AUGMENTATION 78.63 ± 0.46 62.64 ± 0.61 METAOPTNET-SVM (LEE ET AL., 2019) **RESNET-12** WRN-28-10[†] 79.20 ± 0.40 SIB (HU ET AL., 2020) 70.00 ± 0.60 **SAMOVAR-SC-AT-TEN (OURS) RESNET-12** $\textbf{79.85} \pm \textbf{0.20}$ $\mathbf{62.33} \pm \mathbf{0.28}$ (GIDARIS ET AL., 2019) WRN-28-10 79.87 ± 0.33 62.93 ± 0.45 **ResNet-18**[†] 80.51 ± 0.13 64.12 ± 0.82 CTM (LI ET AL., 2019) (DVORNIK ET AL., 2019) WRN-28-10 80.63 ± 0.42 63.06 ± 0.61
 - †: Transductive methods.

FACEBOOK AI

ICML | 2020

Comparison with state of the art on miniImageNet

- SAMOVAR demonstrates competitive results with and without data augmentation.
- SAMOVAR is complementary to approaches like CTM [Li et al. CVPR'19] or [Gidaris et al. ICCV'19]
 - METHOD **FEATURES** 5-SHOT 1-SHOT WITHOUT DATA AUGMENTATION 61.20 ± 1.80 MTL (SUN ET AL., 2019) 75.50 ± 0.80 **RESNET-12** TADAM (ORESHKIN ET AL., 2018) **RESNET-12** 76.70 ± 0.30 58.50 ± 0.30 **SAMOVAR-SC-AT-TEN (OURS) RESNET-12** $\textbf{77.89} \pm \textbf{0.23}$ $\textbf{60.76} \pm \textbf{0.29}$ WITH DATA AUGMENTATION METAOPTNET-SVM (LEE ET AL., 2019) **RESNET-12** 78.63 ± 0.46 62.64 ± 0.61 WRN-28-10[†] 79.20 ± 0.40 70.00 ± 0.60 SIB (HU ET AL., 2020) **SAMOVAR-SC-AT-TEN (OURS) RESNET-12** $\textbf{79.85} \pm \textbf{0.20}$ 62.33 ± 0.28 79.87 ± 0.33 (GIDARIS ET AL., 2019) WRN-28-10 62.93 ± 0.45 CTM (LI ET AL., 2019) **ResNet-18**[†] 80.51 ± 0.13 64.12 ± 0.82 (DVORNIK ET AL., 2019) WRN-28-10 80.63 ± 0.42 63.06 ± 0.61
 - †: Transductive methods.

FACEBOOK AI

ICML | 2020

Summary

- Monte Carlo approximation underestimatea the variance in model parameters.
- We propose SAMOVAR, a meta-learning model based on shared amortized variational inference.
- Task on synthetic data shows that VI approach preserves stochasticity.
- SAMOVAR combined with TADAM shows competitive results on miniImageNet, FC100.

FACEBOOK AI

Thank you!

Thirty-seventh International Conference on Machine Learning