Distance Metric Learning with Joint Representation Diversification

Xu Chu ${ }^{1,2}$ Yang Lin ${ }^{1,2}$ Yasha Wang ${ }^{2,3} \quad$ Xiting Wang ${ }^{4}$

 Hailong $\mathrm{Yu}^{1,2}$ Xin Gao ${ }^{1,2}$ Qi Tong ${ }^{2,5}$${ }^{1}$ School of Electronics Engineering and Computer Science, Peking University
${ }^{2}$ Key Laboratory of High Confidence Software Technologies, Ministry of Education
${ }^{3}$ National Engineering Research Center of Software Engineering, Peking University ${ }^{4}$ Microsoft Research Asia
${ }^{5}$ School of Software and Microelectronics, Peking University

The goal of distance metric learning (DML)
Learn a mapping f_{θ} from the original feature space to a representation space where similar examples are closer than dissimilar examples in the learned representation space.

The training objectives of deep DML methods encourage intra-class compactness and inter-class separability.
EMBEDDING LOSS

- Contrastive loss [Chopra et al., 2005]:

- Triplet loss [Schroff et al., 2015]:

Classification Loss

- AMSoftmax loss [Wang et al., 2018]

The training objectives of deep DML methods encourage intra-class compactness and inter-class separability.
Embedding Loss

- Contrastive loss [Chopra et al., 2005]:
$\ell_{\text {contrastive }}=\left[d\left(x_{a}, x_{p}\right)-m_{\text {pos }}\right]_{+}+\left[m_{\text {neg }}-d\left(x_{a}, x_{n}\right)\right]_{+}$
- Triplet loss [Schroff et al., 2015]: $\ell_{\text {triplet }}=\left[d\left(x_{a}, x_{p}\right)-d\left(x_{a}, x_{n}\right)+m\right]_{+}$
- ...

Classification Loss

- AMSoftmax loss [Wang et al., 2018]:

The training objectives of deep DML methods encourage intra-class compactness and inter-class separability.
Embedding Loss

- Contrastive loss [Chopra et al., 2005]:
$\ell_{\text {contrastive }}=\left[d\left(x_{a}, x_{p}\right)-m_{\text {pos }}\right]_{+}+\left[m_{\text {neg }}-d\left(x_{a}, x_{n}\right)\right]_{+}$
- Triplet loss [Schroff et al., 2015]: $\ell_{\text {triplet }}=\left[d\left(x_{a}, x_{p}\right)-d\left(x_{a}, x_{n}\right)+m\right]_{+}$
- ...

Classification Loss

- AMSoftmax loss [Wang et al., 2018]: $\ell_{A M}=-\log \frac{e^{s\left(\operatorname{Sim}\left(x_{i}, w_{y_{i}}\right)-m\right)}}{e^{s\left(\operatorname{Sim}\left(x_{i}, w_{y_{i}}\right)-m\right)}+\sum_{j \neq y_{i}}^{c} e^{s \operatorname{Sim}\left(x_{i}, w_{j}\right)}}$

■ ...

Trade-off between intra-class compactness and inter-class separability.

Intra-class compactness: risk of filtering out useful factors (for open-set classification)

- Inter-class separability: risk of introducing nuisance factors

Trade-off between intra-class compactness and inter-class separability.

- Intra-class compactness: risk of filtering out useful factors (for open-set classification)
- Inter-class separability: risk of introducing nuisance factors

Trade-off between intra-class compactness and inter-class separability.

- Intra-class compactness: risk of filtering out useful factors (for open-set classification)
- Inter-class separability: risk of introducing nuisance factors

Motivation

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
> improve the DML representation?

Motivation

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

Motivation

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

Results

1 Additional explicit penalizations on intra-class distances of representations is risky for the classification loss methods (AMSoftmax).

MOTIVATION

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?

■ How to leverage the hierarchical representations of DNNs to improve the DML representation?

Results

1 Additional explicit penalizations on intra-class distances of representations is risky for the classification loss methods (AMSoftmax).

2 Encouraging inter-class separability by penalizing distributional similarities of joint representations is beneficial for the classification loss methods (AMSoftmax).

MOTIVATION

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?

■ How to leverage the hierarchical representations of DNNs to improve the DML representation?

Results

1 Additional explicit penalizations on intra-class distances of representations is risky for the classification loss methods (AMSoftmax).

2 Encouraging inter-class separability by penalizing distributional similarities of joint representations is beneficial for the classification loss methods (AMSoftmax).
3 We propose a framework distance metric learning with joint representation diversification (JRD).

Challenge

- How to measure the similarities of joint distributions of representations across multiple layers?

Solution

- Representers of probability measures in the reproducing kernel Hilbert space (RKHS)

Challenge

■ How to measure the similarities of joint distributions of representations across multiple layers?

Solution

■ Representers of probability measures in the reproducing kernel Hilbert space (RKHS)

Definition 1 (kernel mean embedding).

Let $M_{+}^{1}(\mathcal{X})$ be the space of all probability measures \mathbb{P} on a measurable space $(\mathcal{X}, \Sigma) . \mathcal{R} \mathcal{K} \mathcal{H} \mathcal{S}$ is a reproducing kernel Hilbert space with reproducing kernel k. The kernel mean embedding is defined by the mapping, $\mu: M_{+}^{1}(\mathcal{X}) \longrightarrow \mathcal{R} \mathcal{K} \mathcal{H S}, \quad \mathbb{P} \longmapsto \int k(\cdot, \mathbf{x}) \operatorname{dP}(\mathbf{x}) \triangleq \mu_{\mathbb{P}}$.

Challenge

- How to measure the similarities of joint distributions of representations across multiple layers?

Solution

■ Representers of probability measures in the reproducing kernel Hilbert space (RKHS)

Definition 1 (kernel mean embedding).

Let $M_{+}^{1}(\mathcal{X})$ be the space of all probability measures \mathbb{P} on a measurable space $(\mathcal{X}, \Sigma) . \mathcal{R} \mathcal{K} \mathcal{H S}$ is a reproducing kernel Hilbert space with reproducing kernel k. The kernel mean embedding is defined by the mapping, $\mu: M_{+}^{1}(\mathcal{X}) \longrightarrow \mathcal{R} \mathcal{K} \mathcal{H S}, \quad \mathbb{P} \longmapsto \int k(\cdot, \mathbf{x}) \operatorname{dP}(\mathbf{x}) \triangleq \mu_{\mathbb{P}}$.

Definition 2 (cross-covariance operator)

Let $M_{+}^{1}\left(\times_{l=1}^{L} \mathcal{X}^{\prime}\right)$ be the space of all probability measures \mathbb{P} on $\times_{l=1}^{L} \mathcal{X}^{\prime}$. $\otimes_{l=1}^{L} \mathcal{R} \mathcal{K} \mathcal{H S}^{\prime}=\mathcal{R} \mathcal{K} \mathcal{H S}^{1} \otimes \cdots \otimes \mathcal{R} \mathcal{K} \mathcal{H S}^{L}$ is a tensor product space with reproducing kernels $\left\{k^{\prime}\right\}_{l=1}^{L}$. The cross-covariance operator is defined by the mapping, $\mathcal{C}_{\mathbf{x}^{1: L}}: M_{+}^{1}\left(\times_{l=1}^{L} \mathcal{X}^{\prime}\right) \longrightarrow \otimes_{l=1}^{L} \mathcal{R} \mathcal{K} \mathcal{H S}^{\prime}$, $\mathbb{P} \mapsto \int_{\times_{l=1}^{L} \mathbf{x}^{\prime}}\left(\otimes_{l=1}^{L} k^{\prime}\left(\cdot, \mathbf{x}^{\prime}\right)\right) \mathrm{d} \mathbb{P}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{L}\right) \triangleq \mathcal{C}_{\mathbf{x}^{1: L}}(\mathbb{P})$.

Definition 3 (joint representation similarity)

Suppose that $\mathbb{P}\left(\mathbf{X}^{1}, \ldots, \mathbf{X}^{L}\right)$ and $\mathbb{Q}\left(\mathbf{X}^{\prime 1}, \ldots, \mathbf{X}^{\prime L}\right)$ are probability measures on $\times_{l=1}^{L} \mathcal{X}^{\prime}$. Given L reproducing kernels $\left\{k^{\prime}\right\}_{l=1}^{L}$, the joint representation similarity between \mathbb{P} and \mathbb{Q} is defined as the inner product of $\mathcal{C}_{\mathbf{x}^{1: L}}(\mathbb{P})$ and $\mathcal{C}_{\mathbf{X}^{11: L}}(\mathbb{Q})$ in $\otimes_{l=1}^{l} \mathcal{R K} \mathcal{H S}^{\prime}$, i.e.,

$$
\begin{equation*}
\mathcal{S}_{J R S}(\mathbb{P}, \mathbb{Q}) \triangleq\left\langle\mathcal{C}_{\mathbf{x}^{1: L}}(\mathbb{P}), \mathcal{C}_{\mathbf{x}^{\prime}: L}(\mathbb{Q})\right\rangle_{\otimes_{I=1}^{L} \mathcal{R} \mathcal{K} \mathcal{H} \mathcal{S}^{\prime}} \tag{1}
\end{equation*}
$$

Proposition 1 (interpretation for translation invariant kernels)

Suppose that $\left\{k^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\psi^{\prime}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right\}_{L-1}^{L}$ on \mathbb{R}^{d} are bounded, continuous reproducing kernels
Then for any $\mathbb{P}\left(\mathbf{X}^{1}\right.$,

$$
\begin{equation*}
\mathcal{S}_{J R S}(\mathbb{P}, \mathbb{Q})=\prod\left\langle\phi_{P^{\prime}}(\omega), \phi_{Q^{\prime}}(\omega)\right\rangle_{L} \tag{2}
\end{equation*}
$$

where $\phi_{P^{\prime}}(\omega)$ and $\phi_{Q^{\prime}}(\omega)$ are the characteristic functions of the distributions P^{\prime} and Q^{\prime}, and Λ^{\prime} is a (normalized) non-negative Borel measure characterized by $\psi^{\prime}\left(x-x^{\prime}\right)$.

Definition 3 (joint representation similarity)

Suppose that $\mathbb{P}\left(\mathbf{X}^{1}, \ldots, \mathbf{X}^{L}\right)$ and $\mathbb{Q}\left(\mathbf{X}^{\prime 1}, \ldots, \mathbf{X}^{\prime L}\right)$ are probability measures on $\times_{l=1}^{L} \mathcal{X}^{\prime}$. Given L reproducing kernels $\left\{k^{\prime}\right\}_{l=1}^{L}$, the joint representation similarity between \mathbb{P} and \mathbb{Q} is defined as the inner product of $\mathcal{C}_{\mathbf{X}^{1 / L}}(\mathbb{P})$ and $\mathcal{C}_{\mathbf{X}^{1 / L}}(\mathbb{Q})$ in $\otimes_{l=1}^{L} \mathcal{R K} \mathcal{H S}^{\prime}$, i.e.,

$$
\begin{equation*}
\mathcal{S}_{J R S}(\mathbb{P}, \mathbb{Q}) \triangleq\left\langle\mathcal{C}_{\mathbf{x}^{1: L}}(\mathbb{P}), \mathcal{C}_{\mathbf{x}^{\prime}: L}(\mathbb{Q})\right\rangle_{\otimes_{I=1}^{L} \mathcal{R} \mathcal{K} \mathcal{H} \mathcal{S}^{\prime}} \tag{1}
\end{equation*}
$$

Proposition 1 (interpretation for translation invariant kernels)

Suppose that $\left\{k^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\psi^{\prime}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right\}_{l=1}^{L}$ on \mathbb{R}^{d} are bounded, continuous reproducing kernels. Let $P^{\prime} \triangleq \mathbb{P}\left(\mathbf{X}^{\prime} \mid \mathbf{X}^{1: /-1}\right)$ for $I=1, \ldots, L$ with $P^{1}=\mathbb{P}\left(\mathbf{X}^{1}\right)$. Then for any $\mathbb{P}\left(\mathbf{X}^{1}, \ldots, \mathbf{X}^{L}\right), \mathbb{Q}\left(\mathbf{X}^{\prime 1}, \ldots, \mathbf{X}^{\prime L}\right) \in M_{+}^{1}\left(\times_{l=1}^{L} \mathcal{X}^{\prime}\right)$,

$$
\begin{equation*}
\mathcal{S}_{J R S}(\mathbb{P}, \mathbb{Q})=\prod_{l=1}^{L}\left\langle\phi_{P^{\prime}}(\omega), \phi_{Q^{\prime}}(\omega)\right\rangle_{L^{2}\left(\mathbb{R}^{d}, \Lambda^{\prime}\right)}, \tag{2}
\end{equation*}
$$

where $\phi_{P^{\prime}}(\omega)$ and $\phi_{Q^{\prime}}(\omega)$ are the characteristic functions of the distributions P^{\prime} and Q^{\prime}, and Λ^{\prime} is a (normalized) non-negative Borel measure characterized by $\psi^{\prime}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$.

Definition 4 (joint representation similarity regularizer)
Considering $\mathbb{P}(\mathbf{X}-\mathbf{X} \mathbf{X}+)$ the inint renresentation similarity regularizer \mathcal{L} JRS
penalizes the empirical joint representation similarities for all class pairs, specifically,

where k^{-}, k and k^{+}are reproducing kernels, I, J are indexes of class, $n^{\prime} n^{J}$ re-weights class pair (I, J) according to its credibility.

Definition 4 (joint representation similarity regularizer)

Considering $\mathbb{P}\left(\mathbf{X}^{-}, \mathbf{X}, \mathbf{X}^{+}\right)$, the joint representation similarity regularizer $\mathcal{L}_{\text {JRS }}$ penalizes the empirical joint representation similarities for all class pairs, specifically,

$$
\begin{equation*}
\mathcal{L}_{J R S} \triangleq \sum_{l \neq J} n^{\prime} n^{J} \widehat{\mathcal{S}_{J R S}}\left(\mathbb{P}^{\prime}, \mathbb{P}^{J}\right)=\sum_{l \neq J} \sum_{i=1}^{n^{\prime}} \sum_{j=1}^{n^{J}} k^{-}\left(\mathbf{x}_{i}^{\prime-}, \mathbf{x}_{j}^{J-}\right) k\left(\mathbf{x}_{i}^{\prime}, \mathbf{x}_{j}^{J}\right) k^{+}\left(\mathbf{x}_{i}^{I+}, \mathbf{x}_{j}^{J+}\right), \tag{3}
\end{equation*}
$$

where k^{-}, k and k^{+}are reproducing kernels, I, J are indexes of class, $n^{\prime} n^{J}$ re-weights class pair (I, J) according to its credibility.

Definition 4 (joint representation similarity regularizer)

Considering $\mathbb{P}\left(\mathbf{X}^{-}, \mathbf{X}, \mathbf{X}^{+}\right)$, the joint representation similarity regularizer $\mathcal{L}_{J R S}$ penalizes the empirical joint representation similarities for all class pairs, specifically,

$$
\begin{equation*}
\mathcal{L}_{J R S} \triangleq \sum_{l \neq J} n^{\prime} n^{J} \widehat{\mathcal{S}_{J R S}}\left(\mathbb{P}^{\prime}, \mathbb{P}^{J}\right)=\sum_{l \neq J} \sum_{i=1}^{n^{\prime}} \sum_{j=1}^{n^{J}} k^{-}\left(\mathbf{x}_{i}^{\prime-}, \mathbf{x}_{j}^{J-}\right) k\left(\mathbf{x}_{i}^{\prime}, \mathbf{x}_{j}^{J}\right) k^{+}\left(\mathbf{x}_{i}^{I+}, \mathbf{x}_{j}^{J+}\right), \tag{3}
\end{equation*}
$$

where k^{-}, k and k^{+}are reproducing kernels, I, J are indexes of class, $n^{\prime} n^{J}$ re-weights class pair (I, J) according to its credibility.

Experimental Settings

```
Datasets
    1 CUB-200-2011 (CUB)
    2 Cars196 (CARS)
    3 Standard Online Products (SOP)
Kernel design
- Mixture of K Gaussian kernels
    \(k\left(x, x^{\prime}\right)=\frac{1}{K} \sum_{k=1}^{K} \exp \left(\frac{-\left(x-x^{\prime}\right)^{2}}{a^{2}}\right)\)
보․ \(K=3\) for \(\mathbf{X}^{-}\)and \(\mathbf{X}, K^{\prime}=1\) for \(\mathbf{X}^{+}\)
Evaluation Metric
    - Recall@K
```


Implementation details

- Backbone: Inception-BN
n Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS, 80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)
- Mini-batch sampling: Random sampling

Experimental Settings

Datasets

1 CUB-200-2011 (CUB)
2 Cars196 (CARS)
3 Standard Online Products (SOP)
Kernel design

- Mixture of K Gaussian kernels $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{K} \sum_{k=1}^{K} \exp \left(\frac{-\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}}{\sigma_{k}^{2}}\right)$
- $K=3$ for \mathbf{X}^{-}and $\mathbf{X}, K^{\prime}=1$ for \mathbf{X}^{+}

Evaluation Metric

- Recall@K

Implementation details

- Backbone: Inception-BN
- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)
- Mini-batch sampling: Random sampling

Experimental Settings

Datasets

1 CUB-200-2011 (CUB)
2 Cars196 (CARS)
3 Standard Online Products (SOP)
Kernel design

- Mixture of K Gaussian kernels

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{K} \sum_{k=1}^{K} \exp \left(\frac{-\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}}{\sigma_{k}^{2}}\right)
$$

- $K=3$ for \mathbf{X}^{-}and $\mathbf{X}, K^{\prime}=1$ for \mathbf{X}^{+}

Evaluation Metric

- Recall@K

Implementation details

- Backbone: Inception-BN

- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)
- Mini-batch sampling: Random sampling

Experimental Settings

Datasets

1 CUB-200-2011 (CUB)
2 Cars196 (CARS)
3 Standard Online Products (SOP)
Kernel design

- Mixture of K Gaussian kernels

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{K} \sum_{k=1}^{K} \exp \left(\frac{\left(-\left(x-x^{\prime}\right)^{2}\right.}{\sigma_{k}^{2}}\right)
$$

- $K=3$ for \mathbf{X}^{-}and $\mathbf{X}, K^{\prime}=1$ for \mathbf{X}^{+}

Evaluation Metric

- Recall@K

Implementation details

- Backbone: Inception-BN
- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)
- Mini-batch sampling: Random sampling

■ ...

Comparing JRD with 2019 DML Baselines

	CUB				CARS				SOP		
Recall@K(\%)	1	2	4	8	1	2	4	8	1	10	100
DE_DSP [Duan et al., 2019]	53.6	65.5	76.9	-	72.9	81.6	88.8	-	68.9	84.0	92.6
HDML [Zheng et al., 2019]	53.7	65.7	76.7	85.7	79.1	87.1	92.1	95.5	68.7	83.2	92.4
DAMLRRM [Xu et al., 2019]	55.1	66.5	76.8	85.3	73.5	82.6	89.1	93.5	69.7	85.2	93.2
ECAML [Chen and Deng, 2019a]	55.7	66.5	76.7	85.1	84.5	90.4	93.8	96.6	71.3	85.6	93.6
DeML [Chen and Deng, 2019b]	65.4	75.3	83.7	89.5	86.3	91.2	94.3	97.0	76.1	88.4	94.9
SoftTriple Loss [Qian et al., 2019]	65.4	76.4	84.5	90.4	84.5	90.7	94.5	96.9	78.3	90.3	95.9
MS [Wang et al., 2019]	65.7	77.0	86.3	$\underline{91.2}$	84.1	90.4	94.0	96.5	78.2	90.5	96.0
JRD	67.9	78.7	86.2	91.3	84.7	90.7	94.4	97.2	79.2	90.5	96.0

Comparing JRD with 2019 DML Baselines

	CUB				CARS				SOP		
Recall@K(\%)	1	2	4	8	1	2	4	8	1	10	100
DE_DSP [Duan et al., 2019]	53.6	65.5	76.9	-	72.9	81.6	88.8	-	68.9	84.0	92.6
HDML [Zheng et al., 2019]	53.7	65.7	76.7	85.7	79.1	87.1	92.1	95.5	68.7	83.2	92.4
DAMLRRM [Xu et al., 2019]	55.1	66.5	76.8	85.3	73.5	82.6	89.1	93.5	69.7	85.2	93.2
ECAML [Chen and Deng, 2019a]	55.7	66.5	76.7	85.1	84.5	90.4	93.8	96.6	71.3	85.6	93.6
DeML [Chen and Deng, 2019b]	65.4	75.3	83.7	89.5	86.3	91.2	94.3	97.0	76.1	88.4	94.9
SoftTriple Loss [Qian et al., 2019]	65.4	76.4	84.5	90.4	84.5	90.7	94.5	96.9	78.3	90.3	95.9
MS [Wang et al., 2019]	$\underline{65.7}$	$\underline{77.0}$	86.3	91.2	84.1	90.4	94.0	96.5	78.2	90.5	96.0
JRD	67.9	78.7	86.2	91.3	84.7	90.7	94.4	97.2	79.2	90.5	96.0

SENSITIVITY OF α

Effects of modeling The Joint representation

EFFECTS OF MODELING THE JOINT REPRESENTATION

EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES

$$
\begin{equation*}
\mathcal{L}_{\text {AMSoft }}-\alpha \sum_{I} \frac{1}{N_{\text {pairs }}^{I}} \sum_{x_{i}^{I}, x_{j}^{\prime} \in \mathcal{T}_{l}} e^{-\frac{1}{2}\left(\mathrm{x}_{i}^{I}-\mathrm{x}_{j}^{\prime}\right)^{2}} \tag{5}
\end{equation*}
$$

EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES

$$
\begin{equation*}
\mathcal{L}_{\text {AMSoft }}-\alpha \sum_{I} \frac{1}{N_{\text {pairs }}^{l}} \sum_{\mathrm{x}_{i}^{\prime}, \mathrm{x}_{j}^{\prime} \in \mathcal{T}_{l}} e^{-\frac{1}{2}\left(\mathrm{x}_{i}^{l}-\mathrm{x}_{j}^{l}\right)^{2}} \tag{5}
\end{equation*}
$$

Theorem 1 [Ben-David et al., 2010]

Let \mathcal{H} be a hypothesis space. Denote by ϵ_{s} and ϵ_{u} the generalization errors on \mathcal{D}_{s} and \mathcal{D}_{u}, then for every $h \in \mathcal{H}$:

$$
\begin{equation*}
\epsilon_{u}(h) \leq \epsilon_{s}(h)+\hat{d}_{\mathcal{H}}\left(\mathcal{D}_{s}, \mathcal{D}_{u}\right)+\lambda . \tag{6}
\end{equation*}
$$

EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES

$$
\begin{equation*}
\mathcal{L}_{\text {AMSoft }}-\alpha \sum_{I} \frac{1}{N_{\text {pairs }}^{I}} \sum_{\mathbf{x}_{i}^{\prime}, \mathbf{x}_{j}^{\prime} \in \mathcal{T}_{l}} e^{-\frac{1}{2}\left(\mathrm{x}_{i}^{I}-\mathrm{x}_{j}^{l}\right)^{2}} \tag{5}
\end{equation*}
$$

Theorem 1 [Ben-David et al., 2010$]$

Let \mathcal{H} be a hypothesis space. Denote by ϵ_{s} and ϵ_{u} the generalization errors on \mathcal{D}_{s} and \mathcal{D}_{u}, then for every $h \in \mathcal{H}$:

$$
\begin{equation*}
\epsilon_{u}(h) \leq \epsilon_{s}(h)+\hat{d}_{\mathcal{H}}\left(\mathcal{D}_{s}, \mathcal{D}_{u}\right)+\lambda . \tag{6}
\end{equation*}
$$

JRS versus MMD

$\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{R} \mathcal{K} \mathcal{H} \mathcal{S}}^{2}=\left\|\mu_{\mathbb{P}}\right\|_{\mathcal{R} \mathcal{K} \mathcal{H}}^{2}+\left\|\mu_{\mathbb{Q}}\right\|_{\mathcal{R} \mathcal{K H S}}^{2}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{R} \mathcal{K} \mathcal{H S}}$

JRS versus MMD

$$
\begin{equation*}
\operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{R} \mathcal{K} \mathcal{H} \mathcal{S}}^{2}=\left\|\mu_{\mathbb{P}}\right\|_{\mathcal{R} \mathcal{K} \mathcal{H} \mathcal{S}}^{2}+\left\|\mu_{\mathbb{Q}}\right\|_{\mathcal{R} \mathcal{K H} \mathcal{S}}^{2}-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{R K H \mathcal { H }}} \tag{7}
\end{equation*}
$$

(8)

Regularizers	Recall@1	$\lambda^{N N}$	$\hat{d}_{\mathcal{H}} N N$
JMMD $(\alpha @ 0.1)$	$0.486(0.015)$	$0.321(0.006)$	$0.9275(0.003)$
JRD $(\alpha @ 1)$	$0.506(0.013)$	$0.310(0.006)$	$0.934(0.004)$

Kernel Choice

Kernel	$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$		
Gaussian	$\exp \left(-\frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}}{\sigma^{2}}\right)$		
Laplace	$\exp \left(-\frac{\left\\|x-x^{\prime}\right\\| 1}{\sigma}\right)$		
degree-p Inhomogeneous polynomial kernel	$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{p}$		
Kernel inducing MGF	$\exp \left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)$		

Kernel Choice

Kernel	$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$		
Gaussian	$\exp \left(-\frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}}{\sigma^{2}}\right)$		
Laplace	$\exp \left(-\frac{\left\\|x-x^{\prime}\right\\| 1}{\sigma}\right)$		
degree-p Inhomogeneous polynomial kernel	$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{p}$		
Kernel inducing MGF	$\exp \left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)$		

$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$	Recall@1(\%)	Recall@2(\%)	Recall@4(\%)	Recall@8(\%)		
$\exp \left(-\frac{\left(\mathbf{x - \mathbf { x } ^ { \prime }) ^ { 2 }} \sigma^{2}\right)(\alpha @ 1)}{}\right) 67.9$	78.5	86.1	91.2			
$\exp \left(-\frac{\left\\|\mathbf{x}-\mathbf{x}^{\prime}\right\\|_{1}}{\sigma}\right)(\alpha @ 1)$	68.1	78.2	86.4	91.8		
$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{2}(\alpha @ 1 \mathrm{e}-3)$	66.1	77.0	85.3	90.9		
$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{5}(\alpha @ 1 \mathrm{e}-3)$	65.2	76.2	86.4	90.7		
$\exp \left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)(\alpha @ 1 \mathrm{e}-3)$	66.1	76.7	85.4	91.1		

Kernel Choice

Kernel	$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$		
Gaussian	$\exp \left(-\frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}}{\sigma^{2}}\right)$		
Laplace	$\exp \left(-\frac{\left\\|x-x^{\prime}\right\\| 1}{\sigma}\right)$		
degree-p Inhomogeneous polynomial kernel	$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{p}$		
Kernel inducing MGF	$\exp \left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)$		

$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$	Recall@1(\%)	Recall@2(\%)	Recall@4(\%)	Recall@8(\%)		
$\exp \left(-\frac{\left(\mathbf{x - \mathbf { x } ^ { \prime }}\right)^{2}}{\sigma^{2}}\right)(\alpha @ 1)$	67.9	78.5	86.1	91.2		
$\exp \left(-\frac{\left\\|\mathbf{x}-\mathbf{x}^{\prime}\right\\|_{1}}{\sigma}\right)(\alpha @ 1)$	68.1	78.2	86.4	91.8		
$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{2}(\alpha @ 1 \mathrm{e}-3)$	66.1	77.0	85.3	90.9		
$\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{5}(\alpha @ 1 \mathrm{e}-3)$	65.2	76.2	86.4	90.7		
$\exp \left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)(\alpha @ 1 \mathrm{e}-3)$	66.1	76.7	85.4	91.1		

Source Code: Contact Email:
https://github.com/YangLin122/JRD chu_xu@pku.edu.cn

Reference I

[Ben-David et al., 2010] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. (2010).

A theory of learning from different domains.
Machine Learning, 79(1-2):151-175.
[Chen and Deng, 2019a] Chen, B. and Deng, W. (2019a).
Energy confused adversarial metric learning for zero-shot image retrieval and clustering.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 8134-8141.
[Chen and Deng, 2019b] Chen, B. and Deng, W. (2019b).
Hybrid-attention based decoupled metric learning for zero-shot image retrieval.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2750-2759.
[Chopra et al., 2005] Chopra, S., Hadsell, R., and LeCun, Y. (2005).
Learning a similarity metric discriminatively, with application to face verification.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),
volume 1, pages 539-546. IEEE.
[Duan et al., 2019] Duan, Y., Chen, L., Lu, J., and Zhou, J. (2019).
Deep embedding learning with discriminative sampling policy.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4964-4973.
[Qian et al., 2019] Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., and Jin, R. (2019).
Softtriple loss: Deep metric learning without triplet sampling.
In Proceedings of the IEEE International Conference on Computer Vision, pages 6450-6458.
[Schroff et al., 2015] Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 815-823.

Reference II

[Wang et al., 2018] Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. (2018).
Cosface: Large margin cosine loss for deep face recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5265-5274.
[Wang et al., 2019] Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R. (2019).
Multi-similarity loss with general pair weighting for deep metric learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5022-5030.
[Xu et al., 2019] Xu, X., Yang, Y., Deng, C., and Zheng, F. (2019).
Deep asymmetric metric learning via rich relationship mining.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4076-4085.
[Zheng et al., 2019] Zheng, W., Chen, Z., Lu, J., and Zhou, J. (2019).
Hardness-aware deep metric learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 72-81.

