Introduction 0000 Method 000 Experiment 000000 References 00

Distance Metric Learning with Joint Representation Diversification

Xu Chu^{1,2} Yang Lin^{1,2} Yasha Wang^{2,3} Xiting Wang⁴ Hailong Yu^{1,2} Xin Gao^{1,2} Qi Tong^{2,5}

¹School of Electronics Engineering and Computer Science, Peking University ²Key Laboratory of High Confidence Software Technologies, Ministry of Education ³National Engineering Research Center of Software Engineering, Peking University

⁴Microsoft Research Asia

⁵School of Software and Microelectronics, Peking University

July 14, 2020

Introduction	Method	Experiment	References
● 0 00			

The goal of distance metric learning (DML)

Learn a **mapping** f_{θ} from the original feature space to a representation space where similar examples are closer than dissimilar examples in the learned representation space.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Method	Experiment	References
0●00	000	000000	00
The training ob	iectives of deep [ML methods encourage	

intra-class compactness and inter-class separability.

Embedding Loss

- Contrastive loss [Chopra et al., 2005]:
- $\ell_{contrastive} = [d(\mathbf{x}_a, \mathbf{x}_p) m_{pos}]_+ + [m_{neg} d(\mathbf{x}_a, \mathbf{x}_n)]_+$
- Triplet loss [Schroff et al., 2015]: $\ell_{triplet} = [d(x_a, x_p) d(x_a, x_n) + m]_+$

. . . .

CLASSIFICATION LOSS

■ AMSoftmax loss [Wang et al., 2018]: $\ell_{AM} = -\log \frac{e^{s(Sim(x_i, w_{Y_i}) - m)}}{e^{s(Sim(x_i, w_{Y_i}) - m)} + \Sigma_{i, i, v}} e^{sSim(x_i, w_{Y_i})}}$

. . . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Introduction	Method	Experiment	References
0000			

The training objectives of deep DML methods encourage intra-class compactness and inter-class separability. Embedding Loss

- Contrastive loss [Chopra et al., 2005]: $\ell_{contrastive} = [d(x_a, x_p) - m_{pos}]_+ + [m_{neg} - d(x_a, x_n)]_+$
- Triplet loss [Schroff et al., 2015]: $\ell_{triplet} = [d(x_a, x_p) d(x_a, x_n) + m]_+$

. . .

AMSoftmax loss [Wang et al., 2018]: $\ell_{AM} = -\log \frac{e^{s(Sim(x_i, w_{y_i}) - m)}}{e^{s(Sim(x_i, w_{y_i}) - m)} + \sum_{i=1}^{k} e^{sSim(x_i, w_{y_i})}}$

Introduction	Method	Experiment	References
0000			

The training objectives of deep DML methods encourage intra-class compactness and inter-class separability. Embedding Loss

- Contrastive loss [Chopra et al., 2005]: $\ell_{\text{contrastive}} = [d(x_a, x_p) - m_{\text{pos}}]_+ + [m_{\text{neg}} - d(x_a, x_p)]_+$
- Triplet loss [Schroff et al., 2015]: $\ell_{triplet} = [d(x_a, x_p) d(x_a, x_n) + m]_+$

CLASSIFICATION LOSS

AMSoftmax loss [Wang et al., 2018]: $\ell_{AM} = -\log \frac{e^{s(Sim(x_i, w_{y_i}) - m)}}{e^{s(Sim(x_i, w_{y_i}) - m) + \sum_{L'} e^{sSim(x_i, w_{y_i})}}}$

. . .

Introduction	Method	Experiment	References
0000	000	000000	00

Trade-off between intra-class compactness and inter-class separability.

Intra-class compactness: risk of filtering out useful factors (for open-set classification)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Inter-class separability: risk of introducing nuisance factors

Introduction	Method	Experiment	References
0000			

Trade-off between intra-class compactness and inter-class separability.

- Intra-class compactness: risk of filtering out useful factors (for open-set classification)
- Inter-class separability: risk of introducing nuisance factors

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Introduction	Method	Experiment	References
0000			

Trade-off between intra-class compactness and inter-class separability.

- Intra-class compactness: risk of filtering out useful factors (for open-set classification)
- Inter-class separability: risk of introducing nuisance factors

Introduction	Method	Experiment	References
0000			

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Introduction	Method	Experiment	References
0000	000	000000	00

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Introduction	Method	Experiment	References
0000	000	000000	00

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Results

 Additional explicit penalizations on intra-class distances of representations is risky for the classification loss methods (AMSoftmax).

Introduction	Method	Experiment	References
0000	000	000000	00

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

<u>Results</u>

- Additional explicit penalizations on intra-class distances of representations is risky for the classification loss methods (AMSoftmax).
- 2 Encouraging inter-class separability by penalizing distributional similarities of joint representations is beneficial for the classification loss methods (AMSoftmax).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Method	Experiment	References
0000			

- Is it possible to find a better balance point between intra-class compactness and inter-class separability?
- How to leverage the hierarchical representations of DNNs to improve the DML representation?

<u>Results</u>

- Additional explicit penalizations on intra-class distances of representations is risky for the classification loss methods (AMSoftmax).
- 2 Encouraging inter-class separability by penalizing distributional similarities of joint representations is beneficial for the classification loss methods (AMSoftmax).
- 3 We propose a framework distance metric learning with joint representation diversification (JRD).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Method	Experiment	References
0000	•00	000000	00

CHALLENGE

How to measure the similarities of joint distributions of representations across multiple layers?

SOLUTION

 Representers of probability measures in the reproducing kernel Hilbert space (RKHS)

Definition 1 (kernel mean embedding).

Let $M^1_+(\mathcal{X})$ be the space of all probability measures \mathbb{P} on a measurable space (\mathcal{X}, Σ) . \mathcal{RKHS} is a reproducing kernel Hilbert space with reproducing kernel k. The kernel mean embedding is defined by the mapping, $\mu: M^1_+(\mathcal{X}) \longrightarrow \mathcal{RKHS}, \quad \mathbb{P} \longmapsto \int k(\cdot, \mathbf{x}) d\mathbb{P}(\mathbf{x}) \triangleq \mu_{\mathbb{P}}.$

Definition 2 (cross-covariance operator)

Let $M_{+}^{1}(\times_{l=1}^{L}\mathcal{X}')$ be the space of all probability measures \mathbb{P} on $\times_{l=1}^{L}\mathcal{X}'$. $\otimes_{l=1}^{L}\mathcal{RKHS}' = \mathcal{RKHS}^{1} \otimes \cdots \otimes \mathcal{RKHS}^{L}$ is a tensor product space with reproducing kernels $\{k'\}_{l=1}^{L}$. The cross-covariance operator is defined by the mapping, $\mathcal{C}_{\mathbf{X}^{1:L}} : M_{+}^{1}(\times_{l=1}^{L}\mathcal{X}') \longrightarrow \otimes_{l=1}^{L}\mathcal{RKHS}'$, $\mathbb{P} \mapsto \int_{\times_{l=1}^{L}\mathbf{X}'} (\otimes_{l=1}^{L}\mathbf{k}'(\cdot, \mathbf{x}')) d\mathbb{P}(\mathbf{x}^{1}, \dots, \mathbf{x}^{L}) \triangleq \mathcal{C}_{\mathbf{X}^{1:L}}(\mathbb{P}).$

Introduction	Method	Experiment	References
	•00		

CHALLENGE

How to measure the similarities of joint distributions of representations across multiple layers?

SOLUTION

 Representers of probability measures in the reproducing kernel Hilbert space (RKHS)

Definition 1 (kernel mean embedding).

Let $M^1_+(\mathcal{X})$ be the space of all probability measures \mathbb{P} on a measurable space (\mathcal{X}, Σ) . \mathcal{RKHS} is a reproducing kernel Hilbert space with reproducing kernel k. The kernel mean embedding is defined by the mapping, $\mu: M^1_+(\mathcal{X}) \longrightarrow \mathcal{RKHS}, \quad \mathbb{P} \longmapsto \int k(\cdot, \mathbf{x}) d\mathbb{P}(\mathbf{x}) \triangleq \mu_{\mathbb{P}}.$

Definition 2 (cross-covariance operator)

Let $M_{+}^{1}(\times_{l=1}^{L}\mathcal{X}')$ be the space of all probability measures \mathbb{P} on $\times_{l=1}^{L}\mathcal{X}'$. $\otimes_{l=1}^{L}\mathcal{RKHS}' = \mathcal{RKHS}^{1} \otimes \cdots \otimes \mathcal{RKHS}^{L}$ is a tensor product space with reproducing kernels $\{k'\}_{l=1}^{L}$. The cross-covariance operator is defined by the mapping, $\mathcal{C}_{\mathbf{X}^{1:L}} : M_{+}^{1}(\times_{l=1}^{L}\mathcal{X}') \longrightarrow \otimes_{l=1}^{L}\mathcal{RKHS}'$, $\mathbb{P} \mapsto \int_{\times_{l=1}^{L}\mathbf{X}'} (\otimes_{l=1}^{L}\mathbf{k}'(\cdot, \mathbf{x}')) d\mathbb{P}(\mathbf{x}^{1}, \dots, \mathbf{x}^{L}) \triangleq \mathcal{C}_{\mathbf{X}^{1:L}}(\mathbb{P}).$

Introduction	Method	Experiment	References
	•00		

CHALLENGE

How to measure the similarities of joint distributions of representations across multiple layers?

SOLUTION

 Representers of probability measures in the reproducing kernel Hilbert space (RKHS)

Definition 1 (kernel mean embedding).

Let $M^1_+(\mathcal{X})$ be the space of all probability measures \mathbb{P} on a measurable space (\mathcal{X}, Σ) . \mathcal{RKHS} is a reproducing kernel Hilbert space with reproducing kernel k. The kernel mean embedding is defined by the mapping, $\mu: M^1_+(\mathcal{X}) \longrightarrow \mathcal{RKHS}, \quad \mathbb{P} \longmapsto \int k(\cdot, \mathbf{x}) d\mathbb{P}(\mathbf{x}) \triangleq \mu_{\mathbb{P}}.$

Definition 2 (cross-covariance operator)

Let $M_{+}^{1}(\times_{l=1}^{L}\mathcal{X}')$ be the space of all probability measures \mathbb{P} on $\times_{l=1}^{L}\mathcal{X}'$. $\otimes_{l=1}^{L}\mathcal{RKHS}' = \mathcal{RKHS}^{1} \otimes \cdots \otimes \mathcal{RKHS}^{L}$ is a tensor product space with reproducing kernels $\{k'\}_{l=1}^{L}$. The cross-covariance operator is defined by the mapping, $\mathcal{C}_{\mathbf{x}^{1:L}} : M_{+}^{1}(\times_{l=1}^{L}\mathcal{X}') \longrightarrow \otimes_{l=1}^{L}\mathcal{RKHS}'$, $\mathbb{P} \mapsto \int_{\times_{l=1}^{L}\mathbf{x}'} (\otimes_{l=1}^{L}\mathbf{k}'(\cdot,\mathbf{x}')) d\mathbb{P}(\mathbf{x}^{1},\ldots,\mathbf{x}^{L}) \triangleq \mathcal{C}_{\mathbf{x}^{1:L}}(\mathbb{P}).$

Introduction	Method	Experiment	References
	000		

Definition 3 (joint representation similarity)

Suppose that $\mathbb{P}(\mathbf{X}^{1}, \ldots, \mathbf{X}^{L})$ and $\mathbb{Q}(\mathbf{X}^{\prime 1}, \ldots, \mathbf{X}^{\prime L})$ are probability measures on $\times_{l=1}^{L} \mathcal{X}^{l}$. Given L reproducing kernels $\{k^{l}\}_{l=1}^{L}$, the joint representation similarity between \mathbb{P} and \mathbb{Q} is defined as the inner product of $\mathcal{C}_{\mathbf{X}^{1:L}}(\mathbb{P})$ and $\mathcal{C}_{\mathbf{X}^{\prime:L}}(\mathbb{Q})$ in $\otimes_{l=1}^{L} \mathcal{RKHS}^{l}$, i.e.,

$$\mathcal{S}_{JRS}(\mathbb{P},\mathbb{Q}) \triangleq \langle \mathcal{C}_{\mathbf{X}^{1:L}}(\mathbb{P}), \mathcal{C}_{\mathbf{X}^{\prime 1:L}}(\mathbb{Q}) \rangle_{\otimes_{l=1}^{L} \mathcal{RKHS}^{l}}$$
(1)

Proposition 1 (interpretation for translation invariant kernels)

Suppose that $\{k'(\mathbf{x},\mathbf{x}') = \psi'(\mathbf{x}-\mathbf{x}')\}_{l=1}^{L}$ on \mathbb{R}^{d} are bounded, continuous reproducing kernels. Let $P' \triangleq \mathbb{P}(\mathbf{X}'|\mathbf{X}^{1:l-1})$ for l = 1, ..., L with $P^1 = \mathbb{P}(\mathbf{X}^1)$. Then for any $\mathbb{P}(\mathbf{X}^1, ..., \mathbf{X}^L), \mathbb{Q}(\mathbf{X}'^1, ..., \mathbf{X}'^L) \in M_+^1(\times_{l=1}^L \mathcal{X}')$,

$$S_{JRS}(\mathbb{P},\mathbb{Q}) = \prod_{l=1}^{L} \langle \phi_{P^{l}}(\omega), \phi_{Q^{l}}(\omega) \rangle_{L^{2}(\mathbb{R}^{d},\Lambda^{l})},$$
(2)

where $\phi_{P'}(\omega)$ and $\phi_{Q'}(\omega)$ are the characteristic functions of the distributions P'and Q', and Λ' is a (normalized) non-negative Borel measure characterized by $\psi'(\mathbf{x} - \mathbf{x}')$.

Introduction	Method	Experiment	References
	000		

Definition 3 (joint representation similarity)

Suppose that $\mathbb{P}(\mathbf{X}^{1}, ..., \mathbf{X}^{L})$ and $\mathbb{Q}(\mathbf{X}^{\prime 1}, ..., \mathbf{X}^{\prime L})$ are probability measures on $\times_{l=1}^{L} \mathcal{X}^{l}$. Given *L* reproducing kernels $\{k^{l}\}_{l=1}^{L}$, the joint representation similarity between \mathbb{P} and \mathbb{Q} is defined as the inner product of $\mathcal{C}_{\mathbf{X}^{1:L}}(\mathbb{P})$ and $\mathcal{C}_{\mathbf{X}^{\prime:L}}(\mathbb{Q})$ in $\otimes_{l=1}^{L} \mathcal{RKHS}^{l}$, i.e.,

$$\mathcal{S}_{JRS}(\mathbb{P},\mathbb{Q}) \triangleq \langle \mathcal{C}_{\mathbf{X}^{1:L}}(\mathbb{P}), \mathcal{C}_{\mathbf{X}^{\prime 1:L}}(\mathbb{Q}) \rangle_{\otimes_{l=1}^{L} \mathcal{RKHS}^{l}}$$
(1)

Proposition 1 (interpretation for translation invariant kernels)

Suppose that $\{k'(\mathbf{x}, \mathbf{x}') = \psi'(\mathbf{x} - \mathbf{x}')\}_{l=1}^{L}$ on \mathbb{R}^{d} are bounded, continuous reproducing kernels. Let $P' \triangleq \mathbb{P}(\mathbf{X}' | \mathbf{X}^{1:l-1})$ for l = 1, ..., L with $P^1 = \mathbb{P}(\mathbf{X}^1)$. Then for any $\mathbb{P}(\mathbf{X}^1, ..., \mathbf{X}^L), \mathbb{Q}(\mathbf{X}'^1, ..., \mathbf{X}'^L) \in M_+^1(\times_{l=1}^L \mathcal{X}')$,

$$S_{JRS}(\mathbb{P},\mathbb{Q}) = \prod_{l=1}^{L} \langle \phi_{P^{l}}(\omega), \phi_{Q^{l}}(\omega) \rangle_{L^{2}(\mathbb{R}^{d},\Lambda^{l})},$$
(2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\phi_{P^{l}}(\omega)$ and $\phi_{Q^{l}}(\omega)$ are the characteristic functions of the distributions P^{l} and Q^{l} , and Λ^{l} is a (normalized) non-negative Borel measure characterized by $\psi^{l}(\mathbf{x} - \mathbf{x}')$.

Introduction	Method	Experiment	References
	000		

Definition 4 (joint representation similarity regularizer)

Considering $\mathbb{P}(\mathbf{X}^-, \mathbf{X}, \mathbf{X}^+)$, the joint representation similarity regularizer \mathcal{L}_{JRS} penalizes the empirical joint representation similarities for all class pairs, specifically,

$$\mathcal{L}_{JRS} \triangleq \sum_{l \neq J} n^l n^J \widehat{\mathcal{S}_{JRS}}(\mathbb{P}^l, \mathbb{P}^J) = \sum_{l \neq J} \sum_{i=1}^{n^r} \sum_{j=1}^{n^r} k^- (\mathbf{x}_i^{l-}, \mathbf{x}_j^{J-}) k(\mathbf{x}_i^l, \mathbf{x}_j^J) k^+ (\mathbf{x}_i^{l+}, \mathbf{x}_j^{J+}), \quad (3)$$

where k^- , k and k^+ are reproducing kernels, I, J are indexes of class, $n^l n^J$ re-weights class pair (I, J) according to its credibility.

ション ふぼう メリン メリン しょうくしゃ

Introduction	Method	Experiment	References
	000		

Definition 4 (joint representation similarity regularizer)

Considering $\mathbb{P}(\mathbf{X}^-, \mathbf{X}, \mathbf{X}^+)$, the joint representation similarity regularizer \mathcal{L}_{JRS} penalizes the empirical joint representation similarities for all class pairs, specifically,

$$\mathcal{L}_{JRS} \triangleq \sum_{I \neq J} n^{I} n^{J} \widehat{\mathcal{S}_{JRS}}(\mathbb{P}^{I}, \mathbb{P}^{J}) = \sum_{I \neq J} \sum_{i=1}^{n^{\prime}} \sum_{j=1}^{n^{\prime}} k^{-} (\mathbf{x}_{i}^{I-}, \mathbf{x}_{j}^{J-}) k(\mathbf{x}_{i}^{I}, \mathbf{x}_{j}^{J}) k^{+} (\mathbf{x}_{i}^{I+}, \mathbf{x}_{j}^{J+}), \quad (3)$$

where k^- , k and k^+ are reproducing kernels, I, J are indexes of class, $n^I n^J$ re-weights class pair (I, J) according to its credibility.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Introduction	Method	Experiment	References
	000		

Definition 4 (joint representation similarity regularizer)

Considering $\mathbb{P}(\mathbf{X}^-, \mathbf{X}, \mathbf{X}^+)$, the joint representation similarity regularizer \mathcal{L}_{JRS} penalizes the empirical joint representation similarities for all class pairs, specifically,

$$\mathcal{L}_{JRS} \triangleq \sum_{l \neq J} n^l n^J \widehat{\mathcal{S}_{JRS}}(\mathbb{P}^l, \mathbb{P}^J) = \sum_{l \neq J} \sum_{i=1}^{n^l} \sum_{j=1}^{n^J} k^- (\mathbf{x}_i^{l-}, \mathbf{x}_j^{J-}) k(\mathbf{x}_i^l, \mathbf{x}_j^J) k^+ (\mathbf{x}_i^{l+}, \mathbf{x}_j^{J+}), \quad (3)$$

where k^- , k and k^+ are reproducing kernels, I, J are indexes of class, $n^l n^J$ re-weights class pair (I, J) according to its credibility.

Introduction	Method	Experiment	References
		•00000	

Datasets

- 1 CUB-200-2011 (CUB)
- 2 Cars196 (CARS)
- 3 Standard Online Products (SOP)

Kernel design

- Mixture of K Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \frac{1}{K} \sum_{k=1}^{K} exp(\frac{-(\mathbf{x}-\mathbf{x}')^2}{\sigma_{\nu}^2})$
- K = 3 for X^- and X, K' = 1 for X^+

Evaluation Metric

Recall@K

Implementation details

- Backbone: Inception-BN
- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Mini-batch sampling: Random sampling

Introduction	Method	Experiment	References
		•00000	

Datasets

- 1 CUB-200-2011 (CUB)
- 2 Cars196 (CARS)
- 3 Standard Online Products (SOP)

Kernel design

- Mixture of K Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \frac{1}{K} \sum_{k=1}^{K} exp(\frac{-(\mathbf{x}-\mathbf{x}')^2}{\sigma_k^2})$
- K = 3 for \mathbf{X}^- and \mathbf{X} , K' = 1 for \mathbf{X}^+

Evaluation Metric

Recall@K

Implementation details

- Backbone: Inception-BN
- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Mini-batch sampling: Random sampling

Introduction	Method	Experiment	References
		•00000	

Datasets

- 1 CUB-200-2011 (CUB)
- 2 Cars196 (CARS)
- 3 Standard Online Products (SOP)

Kernel design

- Mixture of K Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \frac{1}{K} \sum_{k=1}^{K} exp(\frac{-(\mathbf{x}-\mathbf{x}')^2}{\sigma_k^2})$
- K = 3 for \mathbf{X}^- and \mathbf{X} , K' = 1 for \mathbf{X}^+

Evaluation Metric

Recall@K

Implementation details

- Backbone: Inception-BN
- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 Mini-batch sampling: Random sampling

Introduction	Method	Experiment	References
0000	000	•00000	00

Datasets

- 1 CUB-200-2011 (CUB)
- 2 Cars196 (CARS)
- 3 Standard Online Products (SOP)

Kernel design

- Mixture of K Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \frac{1}{K} \sum_{k=1}^{K} exp(\frac{-(\mathbf{x}-\mathbf{x}')^2}{\sigma_k^2})$
- K = 3 for \mathbf{X}^- and \mathbf{X} , K' = 1 for \mathbf{X}^+

Evaluation Metric

Recall@K

Implementation details

- Backbone: Inception-BN
- Embedding size: 512
- Data augmentation: Random crop, random horizontal mirroring
- Optimizer: Adam
- Epochs: 50 for CUB and CARS,80 for SOP
- Learning rate decay: Divided by 10 every 20(40) epochs for CUB and CARS (SOP)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 Mini-batch sampling: Random sampling

...

ntroduction	Method	Experiment	References
0000		00000	

Comparing JRD with 2019 DML baselines

		Cl	JB			CA	RS			SOP	
Recall@K(%)	1	2	4	8	1	2	4	8	1	10	100
DE_DSP [Duan et al., 2019]	53.6	65.5	76.9	-	72.9	81.6	88.8	-	68.9	84.0	92.6
HDML [Zheng et al., 2019]	53.7	65.7	76.7	85.7	79.1	87.1	92.1	95.5	68.7	83.2	92.4
DAMLRRM [Xu et al., 2019]	55.1	66.5	76.8	85.3	73.5	82.6	89.1	93.5	69.7	85.2	93.2
ECAML [Chen and Deng, 2019a]	55.7	66.5	76.7	85.1	84.5	90.4	93.8	96.6	71.3	85.6	93.6
DeML [Chen and Deng, 2019b]	65.4	75.3	83.7	89.5	86.3	91.2	94.3	97.0	76.1	88.4	94.9
SoftTriple Loss [Qian et al., 2019]	65.4	76.4	84.5	90.4	84.5	90.7	94.5	96.9	78.3	90.3	95.9
MS [Wang et al., 2019]	<u>65.7</u>	77.0	86.3	<u>91.2</u>	84.1	90.4	94.0	96.5	78.2	90.5	96.0
JRD	67.9	78.7	86.2	91.3	84.7	90.7	94.4	97.2	79.2	90.5	96.0

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

ntroduction	Method	Experiment	References
		00000	

Comparing JRD with 2019 DML baselines

		CI	JB			CA	RS			SOP	
Recall@K(%)	1	2	4	8	1	2	4	8	1	10	100
DE_DSP [Duan et al., 2019]	53.6	65.5	76.9	-	72.9	81.6	88.8	-	68.9	84.0	92.6
HDML [Zheng et al., 2019]	53.7	65.7	76.7	85.7	79.1	87.1	92.1	95.5	68.7	83.2	92.4
DAMLRRM [Xu et al., 2019]	55.1	66.5	76.8	85.3	73.5	82.6	89.1	93.5	69.7	85.2	93.2
ECAML [Chen and Deng, 2019a]	55.7	66.5	76.7	85.1	84.5	90.4	93.8	96.6	71.3	85.6	93.6
DeML [Chen and Deng, 2019b]	65.4	75.3	83.7	89.5	86.3	91.2	94.3	97.0	76.1	88.4	94.9
SoftTriple Loss [Qian et al., 2019]	65.4	76.4	84.5	90.4	84.5	90.7	94.5	96.9	78.3	90.3	95.9
MS [Wang et al., 2019]	<u>65.7</u>	77.0	86.3	<u>91.2</u>	84.1	90.4	94.0	96.5	78.2	90.5	96.0
JRD	67.9	78.7	86.2	91.3	<u>84.7</u>	<u>90.7</u>	94.4	97.2	79.2	90.5	96.0

<u>Sensitivity of α </u>

EFFECTS OF MODELING THE JOINT REPRESENTATION $f_{assification Los}$ $f_{assification Los}$ f_{ass	00
$\begin{array}{c c} \hline \\ \hline $	
Recall@K(%) 1 2 4 8 1 10 100	
MRD 59.8(1.3) 71.5(1.2) 80.6(0.9) 88.0(0.9) 78.8 90.4 95.9	
JRD-Pooling 59.1(1.5) 70.7(1.2) 80.3(0.5) 87.7(0.6) 79.0 90.4 95.9	

Introduction 0000		Meth 000	nod		Experime 000000	nt			Reference 00
<u>Eff</u>	ECTS OF 1 Repr Repr	$\begin{array}{c} \text{MODELI}\\ \text{ass Level}\\ \text{esentation} \\ \hline \\ \text{DML}\\ \text{esentation} \\ \hline \\ x^{I}\\ \text{sentation} \\ \hline \\ x^{I} \\ \hline \\ \hline \\ \end{array}$	Classification Loss		REPRESI Regularizer Classification Loss	ENTA' J+ J I Represent	<u>FION</u>		
			convolutional Layers	shared C weights	onvolutional Layers				
				CI	JB				
	R	ecall@K(%)	1	2	4	8	- 1		
		RD	50.7(1.1)	63.7(1.1)	74.8(1.2)	84.1(1.	2)		
	10		49.4(1.1)	62.3(1.1)	73.4(1.5)	83.0(1.	2) 4)		
	L.	RD-Pooling	49.4(1.2)	62.2(1.0)	74.1(1.2)	83.3(1.	0)		
					. /	、			
	D !!!@!/(///)		CA	RS		1	SOP	100	
	Recall@K(%)	L 61.2(1.2)	2	4	8	70.2	10	100	
	MRD	59.8(1.3)	71 5(1 2)	80.6(0.9)	88.0(0.9)	78.8	90.5	90.0	
	JRD-C	58.5(1.5)	69.6(1.3)	79.1(0.7)	86.6(0.9)	77.7	89.8	95.6	
	JRD-Pooling	59.1(1.5)	70.7(1.2)	80.3(0.5)	87.7(0.6)	79.0	90.4	95.9	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction	Method	Experiment	References
		000000	

EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES

$$\mathcal{L}_{AMSoft} - \alpha \sum_{I} \frac{1}{N_{pairs}^{I}} \sum_{\mathbf{x}_{i}^{I}, \mathbf{x}_{j}^{I} \in \mathcal{T}_{I}} e^{-\frac{1}{2}(\mathbf{x}_{i}^{I} - \mathbf{x}_{j}^{I})^{2}}$$
(5)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Yellow Warbler? Wilson Warbler? Orange Crowned Warbler?

Introduction	Method	Experiment	References
0000	000	000●00	00
Explicit penali	ZATION ON INTRA-C	LASS DISTANCES	

$$\mathcal{L}_{AMSoft} - \alpha \sum_{I} \frac{1}{N_{pairs}^{I}} \sum_{\mathbf{x}_{i}^{I}, \mathbf{x}_{j}^{I} \in \mathcal{T}_{I}} e^{-\frac{1}{2}(\mathbf{x}_{i}^{I} - \mathbf{x}_{j}^{I})^{2}}$$
(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Theorem 1 [Ben-David et al., 2010]

Let \mathcal{H} be a hypothesis space. Denote by ϵ_s and ϵ_u the generalization errors on \mathcal{D}_s and \mathcal{D}_u , then for every $h \in \mathcal{H}$:

$$\epsilon_u(h) \leq \epsilon_s(h) + \hat{d}_{\mathcal{H}}(\mathcal{D}_s, \mathcal{D}_u) + \lambda.$$
 (6)

Theorem 1 [Ben-David et al., 2010]

Classes

Let \mathcal{H} be a hypothesis space. Denote by ϵ_s and ϵ_u the generalization errors on \mathcal{D}_s and \mathcal{D}_u , then for every $h \in \mathcal{H}$:

Orange Crowned Warbler?

$$\epsilon_u(h) \leq \epsilon_s(h) + \hat{d}_{\mathcal{H}}(\mathcal{D}_s, \mathcal{D}_u) + \lambda.$$
 (6)

0.8 -

0.0 0.01 0.1

0.2 0.4 0.6

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Method	Experiment	References
0000	000	0000€0	00
JRS versus MM	D		

$$\mathsf{MMD}^{2}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{RKHS}}^{2} = \|\mu_{\mathbb{P}}\|_{\mathcal{RKHS}}^{2} + \|\mu_{\mathbb{Q}}\|_{\mathcal{RKHS}}^{2} - 2\langle\mu_{\mathbb{P}},\mu_{\mathbb{Q}}\rangle_{\mathcal{RKHS}}$$
(7)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	Method	Experiment	References
0000	000	0000€0	00
JRS versus	MMD		

$$\mathsf{MMD}^{2}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{RKHS}}^{2} = \|\mu_{\mathbb{P}}\|_{\mathcal{RKHS}}^{2} + \|\mu_{\mathbb{Q}}\|_{\mathcal{RKHS}}^{2} - 2\langle\mu_{\mathbb{P}},\mu_{\mathbb{Q}}\rangle_{\mathcal{RKHS}}$$
(7)

Regularizers	Recall@1	λ^{NN}	\hat{d}_{HNN}	-
$JMMD(\alpha @0.1)$	0.486(0.015)	0.321(0.006)	0.9275(0.003)	-
JRD(@@1)	0.506(0.013)	0.310(0.006)	0.934(0.004)	_
			< • • • • • • • • • • • • • • • • • • •	<

(8)

æ

ъ

Introduction	Method	Experiment	References
		000000	

KERNEL CHOICE

Kernel	$k(\mathbf{x}, \mathbf{x}')$
Gaussian	$exp(-\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2})$
Laplace	$exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ _1}{\sigma})$
degree-p Inhomogeneous polynomial kernel	$(\mathbf{x} \cdot \mathbf{x}' + 1)^p$
Kernel inducing MGF	$exp(\mathbf{x} \cdot \mathbf{x}')$

$k(\mathbf{x}, \mathbf{x}')$	Recall@1(%)	Recall@2(%)	Recall@4(%)	Recall@8(%)
$exp(-\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2})$ (α @1)	67.9		86.1	91.2
$exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ _1}{\sigma}) (\alpha @1)$	68.1	78.2	86.4	91.8
$(x \cdot x' + 1)^2 (\alpha @1e-3)$	66.1			90.9
$(x \cdot x' + 1)^5 (\alpha @1e-3)$	65.2	76.2	86.4	90.7
$exp(\mathbf{x} \cdot \mathbf{x}') (\alpha @1e-3)$	66.1	76.7	85.4	91.1

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction	Method	Experiment	References
		000000	

KERNEL CHOICE

Kernel	$k(\mathbf{x}, \mathbf{x}')$
Gaussian	$exp(-\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2})$
Laplace	$exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ _1}{\sigma})$
degree-p Inhomogeneous polynomial kernel	$(\mathbf{x} \cdot \mathbf{x}' + 1)^p$
Kernel inducing MGF	$exp(\mathbf{x} \cdot \mathbf{x}')$

$k(\mathbf{x}, \mathbf{x}')$	Recall@1(%)	Recall@2(%)	Recall@4(%)	Recall@8(%)
$exp(-\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2})$ (α @1)	67.9	78.5	86.1	91.2
$exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ _1}{\sigma}) (\alpha @1)$	68.1	78.2	86.4	91.8
$(x \cdot x' + 1)^2 (\alpha @1e-3)$	66.1	77.0	85.3	90.9
$(x \cdot x' + 1)^5$ (α @1e-3)	65.2	76.2	86.4	90.7
$exp(\mathbf{x} \cdot \mathbf{x}')$ (α @1e-3)	66.1	76.7	85.4	91.1

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction	Method	Experiment	References
		000000	

KERNEL CHOICE

Kernel	$k(\mathbf{x}, \mathbf{x}')$
Gaussian	$exp(-\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2})$
Laplace	$exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ _1}{\sigma})$
degree-p Inhomogeneous polynomial kernel	$(\mathbf{x} \cdot \mathbf{x}' + 1)^p$
Kernel inducing MGF	$exp(\mathbf{x} \cdot \mathbf{x}')$

$k(\mathbf{x}, \mathbf{x}')$	Recall@1(%)	Recall@2(%)	Recall@4(%)	Recall@8(%)
$exp(-\frac{(\mathbf{x}-\mathbf{x}')^2}{\sigma^2})$ (α @1)	67.9	78.5	86.1	91.2
$exp(-\frac{\ \mathbf{x}-\mathbf{x}'\ _1}{\sigma}) (\alpha @1)$	68.1	78.2	86.4	91.8
$(x \cdot x' + 1)^2 (\alpha @1e-3)$	66.1	77.0	85.3	90.9
$(x \cdot x' + 1)^5$ (α @1e-3)	65.2	76.2	86.4	90.7
$exp(\mathbf{x} \cdot \mathbf{x}')$ (α @1e-3)	66.1	76.7	85.4	91.1

Source Code: Contact Email: https://github.com/YangLin122/JRD chu_xu@pku.edu.cn

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction 0000	Method 000	Experiment 000000	References ●●
Reference I			
[Ben-David et al., 201 (2010). A theory of learnin <i>Machine Learning</i> ,	0] Ben-David, S., Blitzer, J., Cra g from different domains. 79(1-2):151–175.	ammer, K., Kulesza, A., Pereira, F., and	Vaughan, J. W.
[Chen and Deng, 2019 Energy confused ac In <i>Proceedings</i> of t	a] Chen, B. and Deng, W. (2019 dversarial metric learning for zero- the AAAI Conference on Artificial	9a). shot image retrieval and clustering. Intelligence, volume 33, pages 8134–814	41.
[Chen and Deng, 2019 Hybrid-attention b In <i>Proceedings</i> of t	b] Chen, B. and Deng, W. (2019) ased decoupled metric learning for the IEEE Conference on Computer	9b). r zero-shot image retrieval. r Vision and Pattern Recognition, pages	2750–2759.
[Chopra et al., 2005] Learning a similarit In 2005 IEEE Com volume 1, pages 53	Chopra, S., Hadsell, R., and LeCt cy metric discriminatively, with ap <i>puter Society Conference on Com</i> 39–546. IEEE.	un, Y. (2005). plication to face verification. puter Vision and Pattern Recognition ((CVPR'05),
[Duan et al., 2019] D Deep embedding le In <i>Proceedings</i> of t	Duan, Y., Chen, L., Lu, J., and Zh earning with discriminative sampling the IEEE Conference on Computer	ou, J. (2019). ng policy. r Vision and Pattern Recognition, pages	4964–4973.
[Qian et al., 2019] Q	ian, Q., Shang, L., Sun, B., Hu, J	I., Li, H., and Jin, R. (2019).	

Softtriple loss: Deep metric learning without triplet sampling. In Proceedings of the IEEE International Conference on Computer Vision, pages 6450–6458.

[Schroff et al., 2015] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 815–823.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction	Method	Experiment	References
0000	000	000000	●●
Reference II			

[Wang et al., 2018] Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5265–5274.

- [Wang et al., 2019] Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R. (2019). Multi-similarity loss with general pair weighting for deep metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5022–5030.
- [Xu et al., 2019] Xu, X., Yang, Y., Deng, C., and Zheng, F. (2019).
 Deep asymmetric metric learning via rich relationship mining.
 In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4076–4085.

イロト 不得 トイヨト イヨト ヨー ろくで

[Zheng et al., 2019] Zheng, W., Chen, Z., Lu, J., and Zhou, J. (2019). Hardness-aware deep metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 72–81.