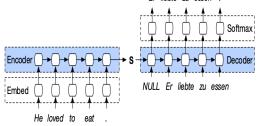
It's Not What Machines Can Learn, It's What We Cannot Teach

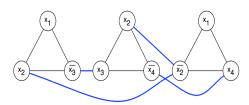
ICML 2020

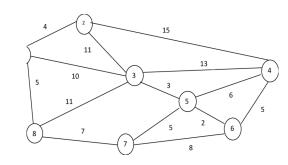
Gal Yehuda, Moshe Gabel, Assaf Schuster

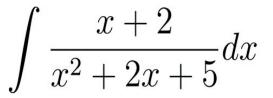
Applications of machine learning



 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

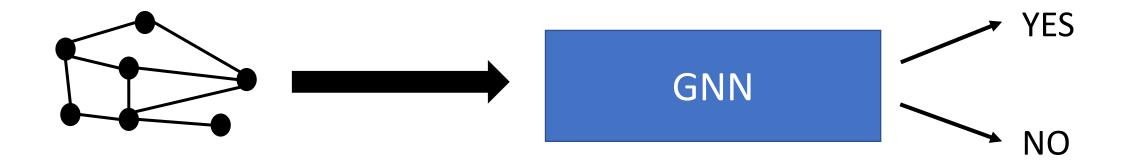






Example : TSP

Given a graph, we feed it to a model which outputs whether a route with cost < C exists

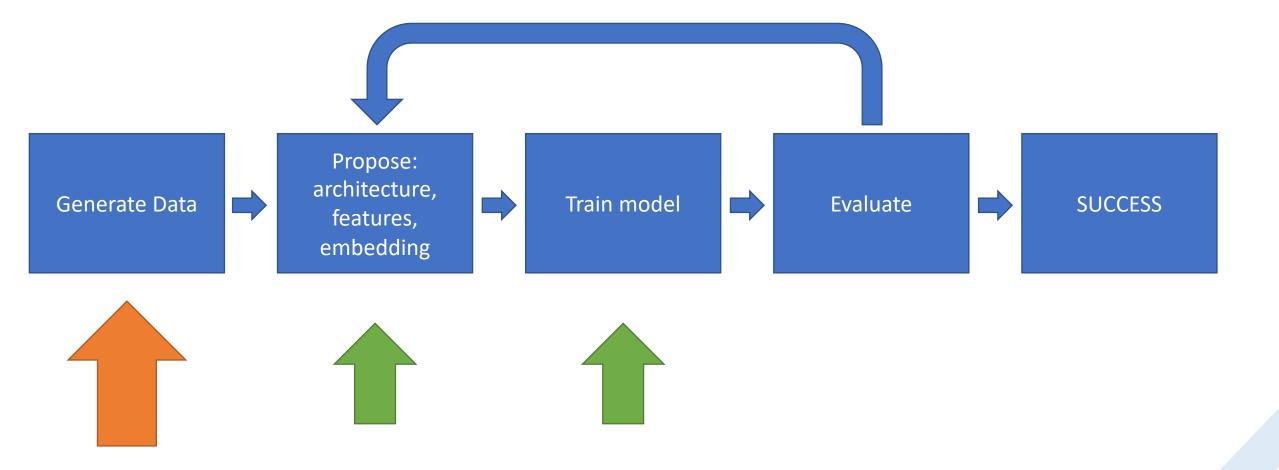


Prates, Avelar, Lemos, Lamb, Vardi, Learning to Solve NP-Complete Problems - A Graph Neural Network for Decision TSP ,AAAI 2019

G. Yehuda, M. Gabel, A. Schuster. It's Not What Machines Can Learn, It's What We Cannot Teach.

ICML 2020

The machine learning process



Current Data Generation

SotA ML methods are data hungry

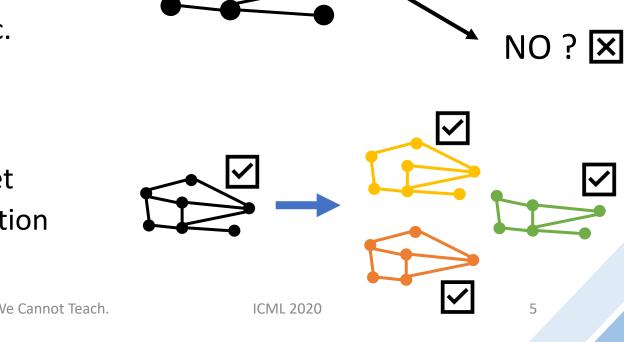
• Need many labeled examples

Labeling training data is **slow**

• Need to solve TSP, check 3-SAT, etc.

Instead, data augmentation:

- Start with small labeled training set
- Apply label-preserving transformation



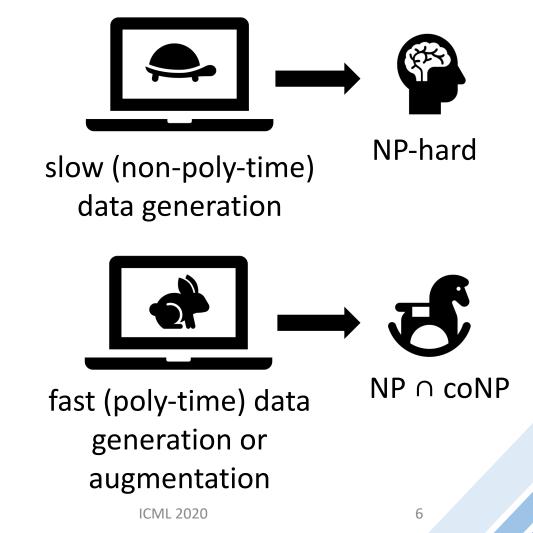
YES ? 🔽

Our Main Result

When starting with NP-hard problem, any efficient data generation or augmentation provably results in **easier subproblem.**

This creates a catch-22:

- Slow data generation \rightarrow dataset too small
- Fast data generation \rightarrow easier subproblem



Case Study: Conjunctive Query Containment

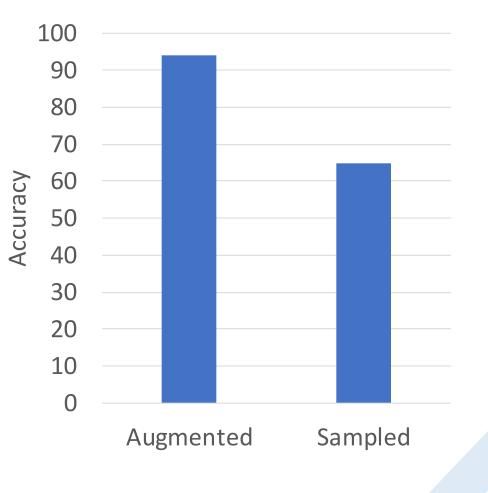
Experiment on a case study, CQC.

Used common data sampling + augmentation approach

Model appears to learn well!

Results on "real" space much lower.

• Up to 30% drop



Efficient data generation results in **easier subproblem** when training.

Can cause overestimation of accuracy when testing.

Results in **catch-22**:

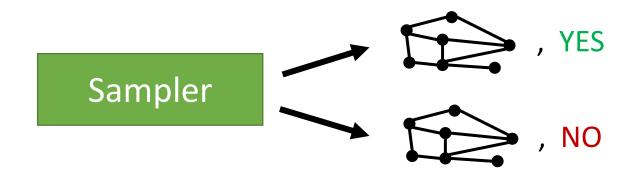
- small amounts of training data from right problem?
- or large amounts of training data from easier subproblem?

Let's dive deeper

What exactly did we show?

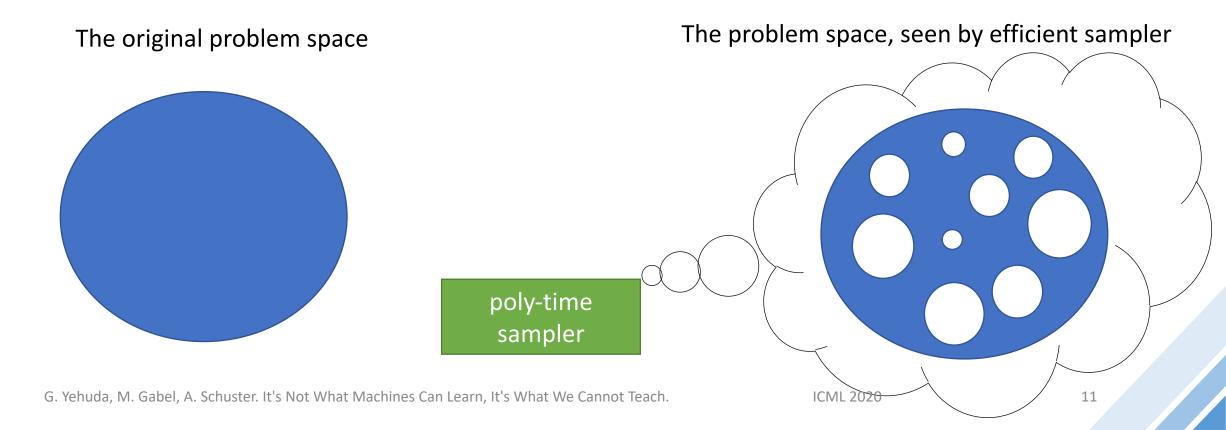
Let **L** be an **NP**-hard language The binary classification problem: is $x \in L$ or not?

Sampler for L : probabilistic algorithm that generates labeled instances **Efficient Sampler** for L : a sampler that runs in poly-time



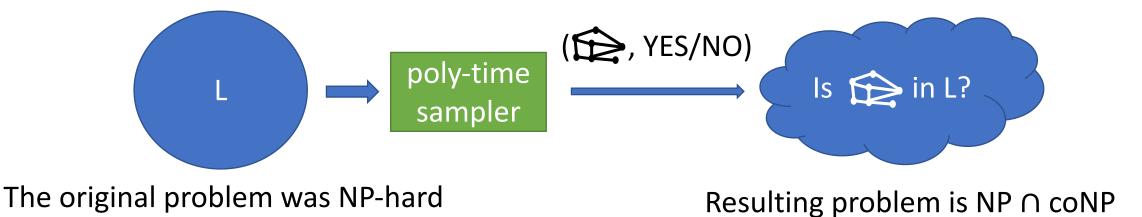
Result 1: All polynomial time samplers are incomplete

• There are infinitely many instances it cannot generate !



Result 2: Poly-time sampler yields easier subproblem

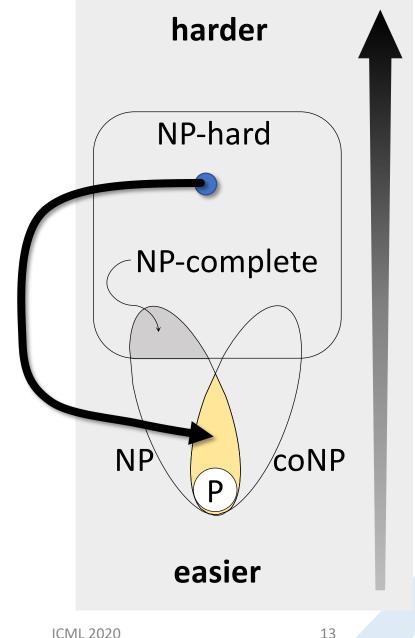
If S_L is a polynomial time sampler for a language L, then the classification task over the instances S_L generates is in NP \cap coNP.



Meaning: efficient sampling does not preserve hardness

Even if we started with an NP-hard problem,

what's left after an efficient sampling is an easier sub-problem



Proof

NP = easy to verify that $x \in L$

For all x, $\exists u$ such that $M(x,u) = 1 \iff x \in L$

 $coNP = easy to verify that x \notin L$

For all x, $\exists u$ such that $M(x,u) = 1 \iff x \notin L$

Proof

If x was generated by an efficient sampler S_L , we can use the randomness used by the sampler both as a membership certificate and a non-membership cetificate

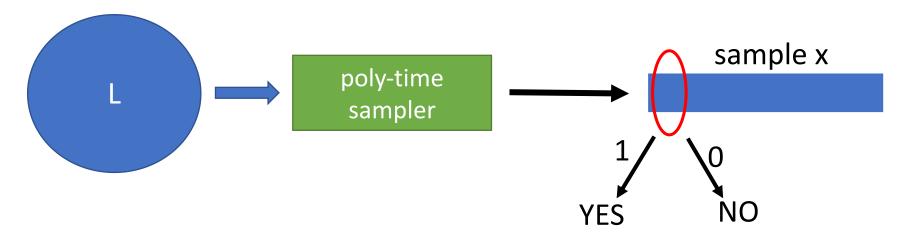
To show that $x \in L$, check if $S_L(u)$ outpus (x, YES) $\rightarrow L \in NP$

To show that $x \notin L$, check if $S_L(u)$ outputs (x, NO) $\rightarrow L \in co-NP$

Result 3: It can get really bad...

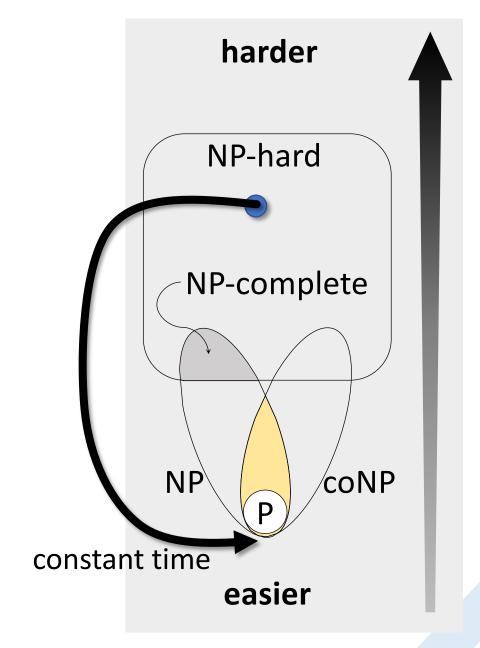
We show an L such that:

- 1. Original L is NP-hard.
- 2. Output of **any** polynomial time sampler for L is trivial to classify: the first bit of X is the label with high probability.



It can get really bad...

Meaning: any learning algorithm trained on efficiently generated data "thinks" it has 100% accuracy, where in fact it learns nothing about the original problem.



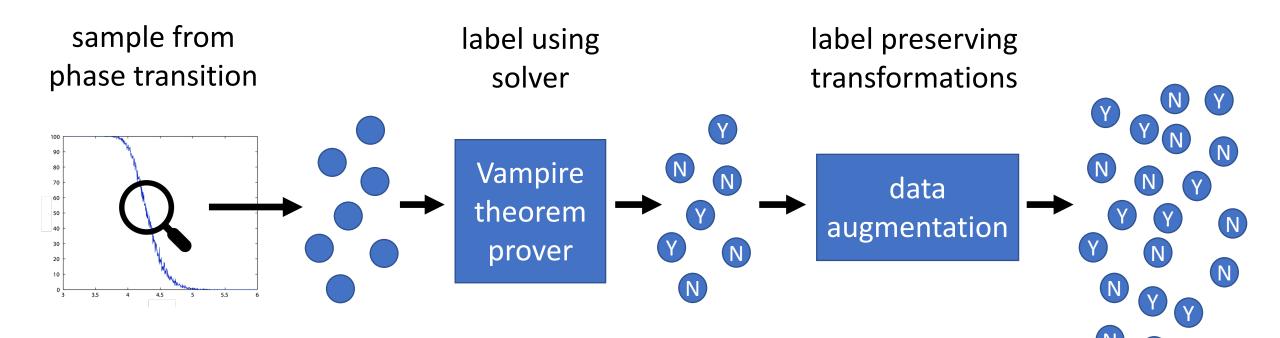
Case study: Conjunctive Query Containment

 A conjunctive query q over a dataset is a first order predicate of the form:

 $\exists x_1, ..., x_n : R_{i_1}(\ell_1, \ell_2, \ell_3) \land \cdots \land R_{i_s}(\ell_{3s-2}, \ell_{3s-1}, \ell_{3s})$

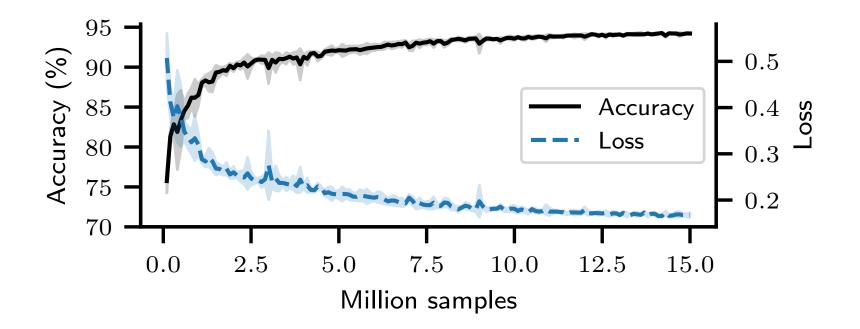
- The task: given two queries **q** and **p**, are the results of **q** contained in the results of **p** regardless of database they run on?
- This is an NP-complete problem.
 - Implications on query optimization, cache management, and more.

Case study: CQC



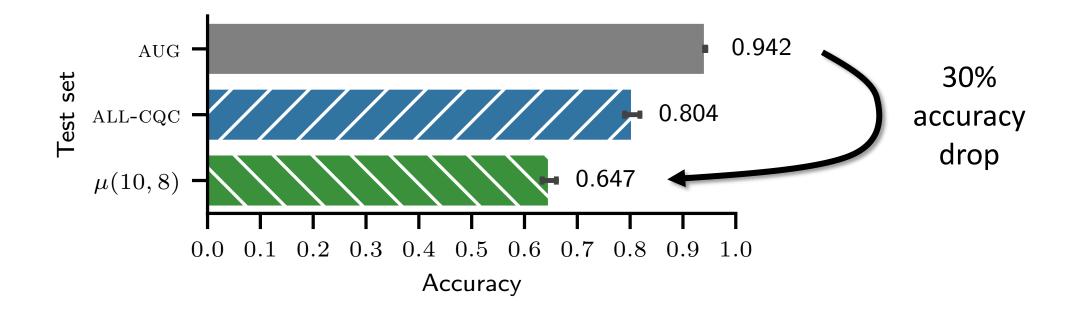
Case study: CQC

Proposed an architecture and trained it to high validation accuracy



Case study: CQC

Evaluate



In Summary

- Can we use Machine Learning to approximately solve NP-hard problems?
- Not enough to worry about the representation power of the network. Also worry about the procedure used to generate the data.
- All poly-time data generators result in easier sub-problems.
 - And it may be very easy.
- We must be careful when we evaluate our models.

THANK YOU!

We will he bappy to discuss the work and answer questions.

ygal@cs.technion.ac.il

mgabel@cs.toronto.edu