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Introduction and Motivation
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• Gaussian processes are a powerful and popular probabilistic
modelling framework for nonlinear functions.

f1

t ′t t ′

f2 Central modelling choice:

K(t, t′)

=

[
cov(f1(t), f1(t

′)) cov(f1(t), f2(t
′))

cov(f2(t), f1(t
′)) cov(f2(t), f2(t

′))

]

• Inference and learning: O(n3p3) time and O(n2p2) memory.

number of
outputs

• Often alleviated by exploiting structure in K.
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x ∼ GP(0,K(t, t′)),

K(t, t) = Im

f(t) = h1x1(t) + h2x2(t)

= Hx(t),

y(t) ∼ N (f(t),Σ),

x : “latent processes”,
H : “basis” or “mixing matrix”. 0

f(t)

h1x1(t) h2x2(t)

• Use m� p basis vectors: data lives in “pancake” around col(H).
• Generalisation of FA to time series setting.
• Captures many existing MOGPs from literature.
• Inference and learning: O(m3n3) instead of O(p3n3).



Inside the ILMM
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7 inference in p(y)

noise: Σ
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yproj = Ty

“projected observation”
for x ∼ GP(0,K(t, t′))

X inference in p(x)

projected noise: ΣT

Proposition: This is exact!
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log p(Y) =

likelihood of projected observations under projected noise

log

∫
p(x)

n∏
i=1

N (Tyi |xi,ΣT) dx

− 1

2

n∑
i=1

‖yi −HTyi‖2Σ

data “lost” by projection
(reconstruction error)

− 1

2
n log

|Σ|
|ΣT|

noise “lost” by
projection

+ const.

• Learning H ⇔ learning T ⇔ learning a transform of the data!
• “Regularisation terms” prevent underfitting.
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• Inference in ILMM: condition x on Yproj under noise ΣT.
• Hence,

if x are independent under the prior and
the projected noise ΣT is diagonal,
then x remain independent upon observing data.

Treat latent processes independently:
condition xi on (Yproj)i: under noise (ΣT)ii!

• Decouples inference into independent single-output problems.



“Decoupling” the ILMM
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x ∼ GP(0,K(t, t′)),

f(t) = Hx(t)

= US
1
2 x(t),

y(t) ∼ N (f(t),Σ).

orthogonal diagonal scaling

Key property: ΣT is diagonal! 0
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Y p(f |Y)
inference
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• Linear scaling in m!
• Trivially compatible with single-output scaling techniques!
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•

•

•

•

•
...

1 Project data and compute proj. noise:

Yproj = S−
1
2 UTY, ΣT = σ−2S−1 + D.

2 For i = 1, . . . ,m,

compute the log-probability LMLi of (Yproj):i under latent
process xi and observation noise (ΣT)ii.

3 Compute the “regularisation term”:

reg. = −n
2
log |S|−n(p−m)

2
log 2πσ2− 1

2σ2
‖(Ip−UUT)Y‖2F

4 Construct the log-probability of the data Y under the OILMM:

log p(Y) =

m∑
i=1

LMLi + reg.
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Class Complexity

MOGP O(p3n3)
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ILMM O(m3n3)

OILMM O(mn3)

Use single-output scaling techniques
to also bring down complexity in n.

O(mnr2) (r inducing points)

O(mnd3) (d-dim. state-space approximation)

Orthogonality gives excellent computational benefits.
But how restrictive is it?
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Definition
An (O)ILMM is separable if K(t, t′) = k(t, t′)Im. Example: ICM.

ILMM versus OILMM:
• Separable case: without loss of generality.
• Non-separable case: only affects correlations through time.
• ILMM can be approximated by an OILMM (in KL) if the right

singular vectors of H are close to unit vectors (in ‖ • ‖F ).

• Separable spatio–temporal GP is an OILMM.
• OILMM gives non-separable relaxation of separable models
whilst retaining efficient inference.
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• Missing data is troublesome: it breaks orthogonality of H.
• In the paper, we derive a simple and effective approximation.



The OILMM in Practice
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Demonstration of Generality 14/17

EEG FX
PPLP SMSE PPLP SMSE

ILMM −2.11 0.49 3.39 0.19
OILMM −2.11 0.49 3.39 0.19

• Near identical performance on two real-world data sets.
• Demonstrates that missing data approximation works well.
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• Jointly model ps = 28 climate simulators at pr = 247 spatial
locations and n = 10 000 points in time.
• Equals p = pspr ≈ 7 k outputs and pn ≈ 70M observations.
• Goal: Learn covariance between simulators with H = Hs ⊗Hr.
• Use m = 50 and inducing points to scale decoupled problems.
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Use projection of the data to accelerate inference in MOGPs with
orthogonal bases:
X Linear scaling in m.
X Simple to implement.
X Trivially compatible with single-output scaling techniques.
X Does not sacrifice significant expressivity.
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