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Introduction and Motivation



I Introduction

e Gaussian processes are a powerful and popular probabilistic
modelling framework for nonlinear functions.

.\/ Central modelling choice:
K(t,t")
= {COV(fl(t)yfl(t/)) COV(fl(t)yfz(t/;)}
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* Inference and learning: O(n?p?) time and O(n?p*) memory.

e Often alleviated by exploiting structure in K. umber of

outputs



I Instantaneous Linear Mixing Model (ILMM)

K(t,t) =1,
x ~ GP(0,K(t, 1)),

f(t) = hlxl(t) + hQQZQ(t)
)

y(t) ~ N(£(t), %),

x: “latent processes’,

H: "basis’ or “mixing matrix’. 0O

Use m < p basis vectors: data lives in “pancake” around col(H).

Generalisation of FA to time series setting.

* Captures many existing MOGPs from literature.

Inference and learning: O(11°n3) instead of O(p*n?).



Inside the ILMM



Key Result

“projected observation”

high-dim. observation for x ~ GP(0,K (¢, 1))
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Proposition: This is exact!



I Key Result (2)
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Key Result (3)

likelihood of projected observations under projected noise
I 1

logp(Y) = log/P(X)HN(Tyz‘ | %, Xr) dx
=1
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data "lost” by projection noise “lost” by
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® Learning H < learning T < learning a transform of the datal

® “Regularisation terms” prevent underfitting.



Key Insight

¢ Inference in ILMM: condition x on Y ,; under noise .
® Hence,

if x are independent under the prior and

the projected noise X is diagonal,

then x remain independent upon observing data.

v

Treat latent processes independently:
condition x; on (Y proj)i: under noise (3 );;!

® Decouples inference into independent single-output problems.



"Decoupling” the ILMM



Orthogonal ILMM (OILMM)

f(t) = Hx(t)
US2x(t)
= X s
AN
orthogonal diagonal scaling

y(t) ~ N(£(t), Z).

Key property: 3 is diagonal! 0

orthogonality constraint
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I Benefits of Orthogonality

inference
» p(f|Y)

X O(n®p?) reconstruction
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e Linear scaling in m/!

e Trivially compatible with single-output scaling techniques!



Benefits of Orthogonality (2)

@ Project data and compute proj. noise: i 7
[ ]

L __—
Yooj =S2U'Y, Br=0328"14D. e :
proj ~—
@ Fori=1,...,m,
compute the log-probability LML; of (Y proj):; under latent
process x; and observation noise (X);;.

® Compute the “regularisation term":

(L-UUNY|%

<p2—m> log 20—
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@ Construct the log-probability of the data Y under the OILMM:

logp(Y) = Z LML; + reg.
i=1



I Complexities of MOGPs

Class Complexity

MOGP O(pn3)  Use single-output scaling techniques
ILMM O(m'n?) to also bring down complexity in n.

(

OILMM O(mn?) < |
(
(

more restrictive

O(mnr?)  (r inducing points)

O(mnd®)  (d-dim. state-space approximation)

Orthogonality gives excellent computational benefits.
But how restrictive is it?




Generality of the OILMM

An (O)ILMM is separable if K(¢,t') = k(t,t')1,,. Example: ICM.

ILMM versus OILMM:

Separable case: without loss of generality.

Non-separable case: only affects correlations through time.

ILMM can be approximated by an OILMM (in KL) if the right
singular vectors of H are close to unit vectors (in ||«| r).

Separable spatio—temporal GP is an OILMM.

OILMM gives non-separable relaxation of separable models
whilst retaining efficient inference.



I Missing Data

® Missing data is troublesome: it breaks orthogonality of H.

® |n the paper, we derive a simple and effective approximation.



The OILMM in Practice



Demonstration of Scalability
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Demonstration of Generality

EEG FX
PPLP SMSE PPLP SMSE

ILMM  —211 0.49 3.39 0.19
OoltMM  —-211 0.49 3.39 0.19

® Near identical performance on two real-world data sets.

® Demonstrates that missing data approximation works well.



Case Study: Climate Simulators
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¢ Jointly model ps = 28 climate simulators at p, = 247 spatial
locations and n = 10000 points in time.

® Equals p = psp, = Tk outputs and pn = 70 M observations.
® (Goal: Learn covariance between simulators with H = H, ® H,..

® Use m = 50 and inducing points to scale decoupled problems.



Case Study: Climate Simulators (2)

Empirical correlations Learned by OILMM

ACCESS1.0

NOrESM1-M




I Conclusion

Use projection of the data to accelerate inference in MOGPs with
orthogonal bases:

V" Linear scaling in m.
v Simple to implement.
v Trivially compatible with single-output scaling techniques.

v Does not sacrifice significant expressivity.
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