Low-loss connection of weight vectors: distribution-based approaches

Ivan Anokhin, Dmitry Yarotsky

Skolkovo Institute of Science and Technology

ICML 2020

Introduction

How much connectedness is there in the bottom of a neural network's loss function?

Connection task: Given two low-lying points (e.g., local minima), connect them by a possibly low lying curve.

Low loss paths: existing approaches

Experimental [Garipov et al.'18, Draxler et al.'18] Optimize the path numerically.

- + Generally applicable
- + Simple paths (e.g. two line segments)
- No explanation why it works

Theoretical [Freeman&Bruna'16, Nguyen'19, Kuditipudi et al.'19] Prove existence of low loss paths.

- + Explain connectedness
- Relatively complex paths
- Require special assumptions on network

This work: a panel of methods

- Generally applicable
- Having a theoretical foundation
- Varying simplicity vs. performance (low loss)

Two-layer network: the distributional point of view

Two-layer network:

$$\hat{\boldsymbol{y}}_n(\boldsymbol{x};\Theta) = \frac{1}{n} \sum_{i=1}^n \sigma(\boldsymbol{x};\boldsymbol{\theta}_i), \quad \Theta = (\boldsymbol{\theta}_i)_{i=1}^n$$

with $\boldsymbol{\theta}_i = (b_i, \boldsymbol{I}_i, \boldsymbol{c}_i)$ and $\sigma(x; \boldsymbol{\theta}_i) = \boldsymbol{c}_i \phi(\langle \boldsymbol{I}_i, x \rangle + b_i)$

Is an "ensemble of hidden neurons":

$$\hat{\boldsymbol{y}}_n(\boldsymbol{x};\Theta) = \int \sigma(\boldsymbol{x};\boldsymbol{\theta}) p(d\boldsymbol{\theta})$$

with distribution $p = \frac{1}{n} \sum_{i=1}^{n} \delta_{\theta_i}$

Key assumption: networks A and B trained under similar conditions have approximately the same distribution p of their hidden neurons θ_i^A, θ_i^B .

Choose connection path $\Psi(t) = (\psi_i(t))$ so that

- For each i, $\psi_i(t=0) = \theta_i^A$ and $\psi_i(t=1) = \theta_i^B$
- 2 For each t, $\psi(t) \sim p$

Then the network output is approximately t-independent, and loss is constant

The simplest possible connection:

$$\psi(t) = (1-t)\theta^A + t\theta^B$$

+ If θ^A , $\theta^B \sim p$, then $\psi(t)$ preserves the mean $\mu = \int \theta dp$ - $\psi(t)$ does not preserve covariance $\int (\theta - \mu)(\theta - \mu)^T dp$

Proposition

If θ^A , θ^B are i.i.d. vectors with the same centered multivariate Gaussian distribution, then for any $t \in \mathbb{R}$

$$\psi(t) = \cos(\frac{\pi}{2}t)\theta^A + \sin(\frac{\pi}{2}t)\theta^B$$

has the same distribution, and also $\psi(0) = \theta^A, \psi(1) = \theta^B$

$$\psi(t) = \mu + \cos(\frac{\pi}{2}t)(\theta^A - \mu) + \sin(\frac{\pi}{2}t)(\theta^B - \mu)$$

- + Preserves shifted Gaussian p with mean μ
- + For a general non-Gaussian p with mean μ , preserves mean and covariance of p

Linear and Arc connections

For a general non-Gaussian distribution p, if ν maps p to $\mathcal{N}(0, I)$, then the path

$$\psi(t) = \nu^{-1} \left[\cos(\frac{\pi}{2}t) \nu(\boldsymbol{\theta}^{A}) + \sin(\frac{\pi}{2}t) \nu(\boldsymbol{\theta}^{B}) \right]$$

is *p*-preserving

Connections using a normalizing map

Learn ν to map from target distribution p to $\mathcal{N}(0, I)$ by using *Normalizing Flow* [Dinh et al.'16, Kingma et al.'16]:

$$\mathbb{E}_{oldsymbol{ heta} \sim oldsymbol{
ho}} \log \left[
ho(
u(oldsymbol{ heta})) ig| \det rac{\partial
u(oldsymbol{ heta})}{\partial oldsymbol{ heta}^T} ig|
ight] o \max_{
u}$$

where ρ is the density of $\mathcal{N}(0, I)$

$$\psi_W(t, \Theta^A, \Theta^B) = \nu_W^{-1}[\cos(\frac{\pi}{2}t)\nu_W(\Theta^A) + \sin(\frac{\pi}{2}t)\nu_W(\Theta^B)]$$

Train ν_W to have low-loss path between any optima, Θ^A and Θ^B , with loss

$$I(W) = \mathbb{E}_{t \sim U(0,1), \Theta^{A} \sim p, \Theta^{B} \sim p} L(\psi_{W}(t, \Theta^{A}, \Theta^{B})),$$

where L(W) is the initial loss with which we train the models Θ^A and Θ^B

For both **Flow** and **Bijection** connections:

- We train learnable connection methods using a dataset of trained model weights Θ;
- We use the networks RealNVP [Dinh et al.'16] and IAF [Kingma et al.'16] as $\nu\text{-transforms.}$

The result is a global connection model: once trained, it can be applied to any pair of local minima Θ^A, Θ^B

Connection using Optimal Transportation (OT)

- **Stage 1:** connect $\{\theta_i^A\}_{i=1}^n$ to $\{\theta_i^B\}_{i=1}^n$ as *unordered sets*
 - Use OT to find a bijective map from samples θ_i^A to nearby samples $\theta_{\pi(i)}^B$
 - Interpolate linearly between respective samples

Stage 2: permute the neurons one-by-one to get the right order

Connections using Weight Adjustment (WA)

A two-layer network: $\mathbf{Y} = W_2 \phi(W_1 \mathbf{X})$

Given two two-layer networks, A and B:

- Connect the first layers $W_1(t) = \psi(t, W_1^A, W_1^B)$ with any considered connection method (e.g. Linear, Arc, OT).
- Adjust the second layer by pseudo-inversion to keep the output possibly *t*-independent: $W_2(t) = \mathbf{Y} \left[\phi(W_1(t)\mathbf{X}) \right]^+$

We consider: Linear + WA, Arc + WA and OT + WA.

Overview of the methods

	&+Q	icit for	nula nable noute re	Pathcomp	Loss of
Linear	+	_	low	low	high
Arc	+	—	low	low	high
Flow	—	+	medium	medium	high
Bijection	_	+	medium	medium	low
ОТ	_	_	medium	high	low
WA based	_	_	high	high	low

Experiments (two layer networks)

The worst accuracy (%) along the path for networks with 2000 hidden ReLU units

	MN	IIST	CIFAR10		
Methods	train	test	train	test	
Linear	96.54 ± 0.40	95.87 ± 0.40	32.09 ± 1.33	39.34 ± 1.52	
Arc	97.89 ± 0.11	97.03 ± 0.14	49.97 ± 0.86	41.34 ± 1.39	
IAF flow	96.34 ± 0.54	95.80 ± 0.45	-	-	
RealNVP bijection	98.50 ± 0.09	97.53 ± 0.11	63.46 ± 0.27	53.94 ± 0.95	
Linear + WA	98.76 ± 0.01	97.86 ± 0.05	52.63 ± 0.59	57.66 ± 0.26	
Arc + WA	98.75 ± 0.01	97.86 ± 0.05	58.77 ± 0.32	57.88 ± 0.24	
OT	98.78 ± 0.01	97.87 ± 0.04	66.19 ± 0.23	56.49 ± 0.46	
OT + WA	98.92 ± 0.01	97.91 ± 0.03	67.02 ± 0.12	58.96 ± 0.21	
Garipov (3)	99.10 ± 0.01	97.98 ± 0.02	68.51 ± 0.08	58.74 ± 0.23	
Garipov (5)	99.03 ± 0.01	97.93 ± 0.02	67.20 ± 0.12	57.88 ± 0.32	
End Points	99.14 ± 0.01	98.01 ± 0.03	70.60 ± 0.12	59.12 ± 0.26	

Connection of multi layer networks

An intermediate point Θ_k^{AB} on the path has head of network A attached to tail of network B

We adjust the transitional layer W_k^{AB} using the Weight Adjustment procedure, to preserve the output of the k'th layer of network A

The full path: $\Theta^A \to \Theta_2^{AB} \to \Theta_3^{AB} \to \cdots \to \Theta_n^{AB} \to \Theta^B$

The transition $\Theta_k^{AB} \to \Theta_{k+1}^{AB}$

Θ_k^{AB} and Θ_{k+1}^{AB} differ only in layers k and k + 1
 Connect Θ_k^{AB} to Θ_{k+1}^{AB} like a two-layer network

Experiments. Three layer MLP

The worst accuracy (%) along the path for networks with 6144 and 2000 hidden ReLU units

	CIFAR10				
Methods	train	test			
Linear	47.81 ± 0.76	38.38 ± 0.84			
Arc	60.60 ± 0.79	49.63 ± 0.86			
Linear + WA	60.93 ± 0.25	51.87 ± 0.24			
Arc + WA	71.10 ± 0.23	58.86 ± 0.29			
OT	81.95 ± 0.29	59.11 ± 0.46			
OT + WA	87.53 ± 0.18	61.67 ± 0.49			
Garipov (3)	94.56 ± 0.08	61.38 ± 0.36			
Garipov (5)	90.32 ± 0.06	60.75 ± 0.32			
End Points	95.13 ± 0.08	63.25 ± 0.36			

Convnets

For CNNs, connection methods work similarly to dense nets, but with filters instead of neurons

	Conv	2FC1	VGG16		
Methods	train	test	train	test	
Linear + WA	71.09 ± 0.38	67.07 ± 0.49	94.16 ± 0.38	87.55 ± 0.41	
Arc + WA	77.36 ± 0.99	73.77 ± 0.88	95.35 ± 0.23	88.56 ± 0.28	
Garipov (3)	85.10 ± 0.25	80.95 ± 0.16	99.69 ± 0.03	91.25 ± 0.14	
End Points	87.18 ± 0.14	82.61 ± 0.18	$99.99\pm0.$	91.67 ± 0.10	

Accuracy (%) of three layer convnet, Conv2FC1 and VGG16, on CIFAR10. Conv2FC1 has 32 and 64 channels in convolution layers and \sim 3000 neurons in FC

Experiments. VGG16

Test error (%) along the path for VGG16

WA-Ensembles

- Take *m* independently trained networks $\Theta^A, \Theta^B, \Theta^C, ...$
- Take the tail of network Θ^A up to some layer k as a backbone;
- Use WA to transform the other networks to have the same backbone;
- Make ensemble with the common backbone.

Compared to the usual ensemble:

- + Smaller storage & complexity (thanks to common backbone);
- Lower accuracy (due to errors introduced by WA).

Experiments. WA-Ensembles. VGG16

Test accuracy (%) of ensemble methods with respect to number of models.

- WA(n): WA-ensemble with n layers in the head
- Ind: usual ensemble averaging of independent models (\equiv WA(16))

- Simple **Arc** modification noticeably improves the trivial **Linear** connection.
- **Optimal Transportation** with **Weight Adjustment** based connection method achieves low loss on par with direct numerical optimization, but is more interpretable.
- In **WA-ensembles**, a longer common backbone reduces amount of computation at the cost of accuracy.