Fast Adaptation via Policy-Dynamics Value Functions

ICML 2020

Roberta Raileanu NYU Max Goldstein NYU

Arthur Szlam FAIR

Rob Fergus NYU

Dynamics Often Change in the Real World

How can agents rapidly **adapt** to changes in the environment's **dynamics**?

Learn a General Value Function in the Space of Policies and Dynamics

Policy-Dynamics Value Function (PD-VF)

$$V^{\pi}(s) = \mathbb{E}\left[R_t | S_t = s, A_t \sim \pi, S_{t+1} \sim \mathcal{T}
ight]$$

Fast Adaptation to New Dynamics

Family of Environments

 $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma)$

Each Environment has a Different Transition Function

$$\mathcal{T}_d(s'|s,a) \in \mathcal{T} \quad d$$
 unobserved

Train on a Family of Different but Related Dynamics

$$d \sim \mathcal{D}_{train}$$

Test on New Dynamics

$$d \sim \mathcal{D}_{test} ~~ \mathcal{D}_{test}
eq \mathcal{D}_{train}$$

Training Recipe

- 1. Reinforcement Learning Phase
 - train individual policies on each training environment
- 2. Self-Supervised Learning Phase
 - Learn policy and dynamics embeddings using collected the trajectories

3. Supervised Learning Phase

- Learn a value function for this space of policies and environments

4. Evaluation Phase

- Infer the dynamics of a new environment using ≤ 4 steps
- Find the policy that maximizes the learned value function

Learning Policy and Dynamics Embeddings

Learning the Policy-Dynamics Value Function

Training the Policy-Dynamics Value Function

 $R=W(s_0,z_\pi,z_d;\psi)$

Evaluation Phase

$$z^{\star}_{\pi} = argmax_{z_{\pi}}W(s_0, z_{\pi}, z_d)$$

$$W(s_0,z_\pi,z_d)=z_\pi^T\,A(s_0,z_d;\psi)\,z_\pi$$

Closed-form solution: top singular vector of A's SVD decomposition

 z_{π}^{\star} Optimal Policy Embedding (OPE)

Environments

Continuous Dynamics

Spaceship

Swimmer

Ant-Wind

Ant-Legs

Discrete Dynamics

Ant-Legs

Evaluation on Unseen Environments

Evaluation on Unseen Environments

Learned Embeddings

15

t-SNE dimension 2

-10

-15

-15 -10

-5

0 5

t-SNE dimension 1

10 15

Swimmer

Dynamics Color

Policy Color

Policy Embeddings

Dynamics Embeddings

Learn a value function in a space of policies and dynamics

Infer the dynamics of a new environment from only a few interactions

No need for parameter updates, long rollouts, or dense rewards to adapt

Improved performance on unseen environments

Future Work

- Reward function variation \rightarrow condition W on a task embedding
- Multi-agent settings \rightarrow dynamics given by the others' policies
- Continual learning
- Integrate prior knowledge / constraints
- Estimate other metrics apart from reward

Thank you!