Einsum Networks

Fast and Scalable Learning of Tractable Probabilistic Circuits

Robert Peharz Eindhoven University of Technology

Karl Stelzner Technical University of Darmstadt

Guy Van den Broeck University of California, Los Angeles Steven Lang Technical University of Darmstadt

Alejandro Molina Technical University of Darmstadt

Kristian Kersting Technical University of Darmstadt Antonio Vergari University of California, Los Angeles

Martin Trapp Graz University of Technology

Zoubin Ghahramani University of Cambridge; Uber Al Labs

International Conference on Machine Learning (ICML), July 2020

In This Paper

Computational graph containing 3 types of operations: Distributions (leaves), products, and weighted sums.

Computational graph containing 3 types of operations: **Distributions (leaves)**, products, and weighted sums.

Computational graph containing 3 types of operations: Distributions (leaves), **products**, and weighted sums.

Computational graph containing 3 types of operations: Distributions (leaves), products, and **weighted sums**.

Arbitrary probability function (pdf, pmf, mixed) over some set of random variables X. Should facilitate tractable inference routines, e.g. marginalization, conditioning, MAP, ...

 $p(\mathbf{x})$

$$p(\mathbf{x}) \qquad h(\mathbf{x}) \exp(\boldsymbol{\theta}^T T(\mathbf{x}) - A(\boldsymbol{\theta}))$$

Simply product units

Simply product units

Simply product units

Computational graph containing distributions, products, and weighted sums.

Computational graph containing distributions, products, and weighted sums. **Plus: Structural properties!**

Computational graph containing distributions, products, and weighted sums. **Plus: Structural properties!**

Computational graph containing distributions, products, and weighted sums. **Plus: Structural properties!**

Computational graph containing distributions, products, and weighted sums. **Plus: Structural properties!**

Smoothness

sum children have same scope

Computational graph containing distributions, products, and weighted sums. **Plus: Structural properties!**

Smoothness

sum children have same scope

Decomposability

product children have disjoint scope

Probabilistic Circuits — Inference

Example: Marginalization and Conditioning

$$\mathbf{X} = \mathbf{X}_q \cup \mathbf{X}_m \cup \mathbf{X}_e$$

$$p(\mathbf{X}_q | \mathbf{x}_e) = \frac{\int p(\mathbf{X}_q, \mathbf{x}'_m, \mathbf{x}_e) \mathrm{d}\mathbf{x}'_m}{\int \int p(\mathbf{x}'_q, \mathbf{x}'_m, \mathbf{x}_e) \mathrm{d}\mathbf{x}'_q \mathrm{d}\mathbf{x}'_m}$$

Probabilistic Circuits — Inference

Example: Marginalization and Conditioning

$$\mathbf{X} = \mathbf{X}_q \cup \mathbf{X}_m \cup \mathbf{X}_e$$
$$p(\mathbf{X}_q \mid \mathbf{x}_e) = \frac{\int p(\mathbf{X}_q, \mathbf{x}'_m, \mathbf{x}_e) \mathrm{d}\mathbf{x}'_m}{\int \int p(\mathbf{x}'_q, \mathbf{x}'_m, \mathbf{x}_e) \mathrm{d}\mathbf{x}'_q \mathrm{d}\mathbf{x}'_m}$$

Smoothness and decomposability \Rightarrow Single bottom up pass!

Probabilistic Circuits — Inference

Example: Marginalization and Conditioning

$$\mathbf{X} = \mathbf{X}_q \cup \mathbf{X}_m \cup \mathbf{X}_e$$
$$p(\mathbf{X}_q \mid \mathbf{x}_e) = \frac{\int p(\mathbf{X}_q, \mathbf{x}'_m, \mathbf{x}_e) \mathrm{d}\mathbf{x}'_m}{\int \int p(\mathbf{x}'_q, \mathbf{x}'_m, \mathbf{x}_e) \mathrm{d}\mathbf{x}'_q \mathrm{d}\mathbf{x}'_m}$$

Smoothness and decomposability \Rightarrow Single bottom up pass!

Check out our AAAI tutorial on Probabilistic Circuits! Upcoming tutorials at ECAI, ECML/PKDD, IJCAI!

Step I – Vectorize Nodes

 $(\land) \rightarrow (\land_1, \land_2, \ldots, \land_K)$ $(\textcircled{+} \rightarrow | \textcircled{+}_1, \textcircled{+}_2, \dots, \textcircled{+}_K |$

Step II – The Basic Einsum Operation

Step II – The Basic Einsum Operation

 $\mathsf{S}_k = W_{kij} \mathsf{N}_i \mathsf{N}_j'$ single einsum-operation

Step III – Einsum Layers

Step III – Einsum Layers

 $\mathbf{S}_{lk} = \mathbf{W}_{lkij} \mathbf{N}_{li} \mathbf{N}'_{lj}$ single einsum-operation

Results

Runtime and Memory Comparison

Generative Image Models

Conclusion

- PCs: intersection of classical graphical models and neural networks.
- Crucial advantage: many exact inference routines.
- But, they used to be painful to scale.
- In this paper, we made a big step to close the gap. More to come!

https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/SPFlow/SPFlow