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In This Paper

Probabilistic Circuits (PCs) — Just a special type of neural network

Yet, they are slow

Computational graphs highly sparse and cluttered

Operations implemented in the log-domain

∼ 50 times slower than neural net of comparable size

We propose Einsum Networks (EiNets)

PC architecture using a few monolithic einsum operations

Run and train PCs up to two orders of magnitude faster

Scale PCs to datasets previously out of reach (CelebA, SVHN)
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Probabilistic Circuits
Computational graph containing 3 types of operations:
Distributions (leaves), products, and weighted sums.
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Arbitrary probability function (pdf, pmf, mixed) over some set of random variablesX.
Should facilitate tractable inference routines, e.g. marginalization, conditioning, MAP, …
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x

p(x)
h(x) exp(θTT (x)− A(θ))

Gaussian, Bernoulli, Dirichlet,
Poisson, Gamma, …
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Probabilistic Circuits
Computational graph containing distributions, products, and weighted sums.

Plus: Structural properties!
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Probabilistic Circuits
Computational graph containing distributions, products, and weighted sums.
Plus: Structural properties!
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X1

X2

X3

=: p(X1, X2, X3)

Smoothness
sum children have same scope

Decomposability
product children have disjoint scope



Probabilistic Circuits — Inference
Example: Marginalization and Conditioning

X = Xq ∪Xm ∪Xe

p(Xq |xe) =

∫
p(Xq,x

′
m,xe)dx

′
m∫ ∫

p(x′
q,x

′
m,xe)dx′

qdx
′
m

Smoothness and decomposability⇒ Single bottom up pass!

Check out our AAAI tutorial on Probabilistic Circuits!
Upcoming tutorials at ECAI, ECML/PKDD, IJCAI!
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Einsum Networks



Step I – Vectorize Nodes
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Step II – The Basic Einsum Operation

Sk = WkijNiN
′
j single einsum-operation
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Step III – Einsum Layers

Slk = WlkijNliN
′
lj single einsum-operation
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Results



Runtime and Memory Comparison

0

10

20

30

40

100 101

Training time (sec/epoch)

10−2

10−1

100

101

GP
U 

m
em

or
y 

(G
B)

K

EiNets (x)
SPFlow (+)
LibSPN (*)

10−1 100 101 102

Training time (sec/epoch)

10−1

100

D (depth)

10−1 100 101 102

Training time (sec/epoch)

10−2

10−1

100

101

R (# replicas)

19/21



Generative Image Models
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Conclusion

PCs: intersection of classical graphical models and neural networks.

Crucial advantage: many exact inference routines.

But, they used to be painful to scale.

In this paper, we made a big step to close the gap. More to come!

https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/SPFlow/SPFlow
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