Option Discovery in the Absence of Rewards with Manifold Analysis

Amitay Bar, Ronen Talmon and Ron Meir

Viterbi Faculty of Electrical Engineering Technion - Israel Institute of Technology

Option Discovery

- We address the problem of option discovery
- **Options** (a.k.a. skills) are a predefined sequence of primitive actions [Sutton et al. '99]
- Options were shown to improve both learning and exploration

Setting

- Not associated with any specific task
- Acquired without receiving any reward
- Important and challenging problem in RL

Contribution

- A new approach to option discovery with theoretical foundation
 - Based on manifold analysis
- The analysis includes novel results in manifold learning
- We propose an algorithm for option discovery
 - Outperforms competing options

Graph Based Approach

- The finite domain is represented by a graph [Mahadevan '07]
 - Nodes the states (S is the set of states)
 - Edges according to the state's connectivity
- The graph is a discrete representation of a manifold

The Proposed Algorithm

- 1. Compute the random walk matrix $W = \frac{1}{2}(I MD^{-1})$
- 2. Apply EVD to W and obtain its left and right eigenvectors $\{\phi_i\}, \{\tilde{\phi}_i\}, and its eigenvalues <math>\{\omega_i\}$

3. Construct
$$f_t: \mathbb{S} \to \mathbb{R}$$
, $f_t(s) = \left\|\sum_{i\geq 2} \omega_i^t \phi_i(s) \tilde{\phi}_i\right\|^2$

To be motivated later

- 4. Find the local maxima of $f_t(s)$, denoted as $\{s_o^{(i)}\} \subset \mathbb{S}$
- 5. For each local maximum, $s_o^{(i)}$, build an option leading to it

 f_t allows the identification of goal states

Demonstrating the Score Function

• **4Rooms** [Sutton et al. '99]

$$f_t(s) = \left\| \sum_{i \ge 2} \omega_i^t \phi_i(s) \tilde{\phi}_i \right\|^2$$

- The local maxima of $f_t(s)$ are at states that are "far away" from all other states
 - Corner states and bottleneck states

Experimental Results - Learning

- Q learning [Watkins and Dayan, '92]
- Eigenoptions [Machado et al. '17]

Normalized visitation during learning

Experimental Results - Exploration

- Exploration
 - Median number of steps between every two states [Machado et al. '17]

Domain (#states)	t	#options	Diffusion	Eigenoptions	Cover	Random
			Options		Options	Walk
C Ring (192)	4	32	217	301	361	565
	13	28	219	279	363	565
Maze (148)	4	19	282	446	525	1280
	13	14	249	641	498	1280
4Rooms (104)	4	20	147	160	179	487
	13	15	140	162	175	487

[Machado et al. '17] [Jinnai et al. '19]

Theoretical Analysis

- We use manifold learning results and concepts
 - Diffusion distance [Coifman and Laffon '06]
 - New concept considering the entire spectrum [Cheng and Mishne '18]
- Comparison to existing work eigenoptions [Machado et al. '17] and cover options [Jinnai et al. '19]
 - Use only the principal components instead of all/many
 - Consider only one eigenvector at a time, instead of incorporating them together

Diffusion Distance

• Consider
$$\boldsymbol{W}^t = \left(\cdots \begin{bmatrix} \boldsymbol{w}_l^t \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix}$$

$$\boldsymbol{W} = \frac{1}{2} (\boldsymbol{I} - \boldsymbol{M} \boldsymbol{D}^{-1})$$

$$D_t(s,s') = \|\boldsymbol{w}_s^t - \boldsymbol{w}_{s'}^t\|$$

Properties of the Score Function

Proposition 1

The function $f_t: \mathbb{S} \to \mathbb{R}$ can be expressed as

$$f_t(s) = \langle D_t^2(s, s') \rangle_{s' \in \mathbb{S}} + const$$

• $\langle D_t^2(s, s') \rangle_{s' \in \mathbb{S}}$ is the average diffusion distance between state s and all other states

Properties of the Score Function

Proposition 1

The function $f_t: \mathbb{S} \to \mathbb{R}$ can be expressed as

$$f_t(s) = \langle D_t^2(s, s') \rangle_{s' \in \mathbb{S}} + const$$

• Option discovery: $\max f_t(s) = \max \langle D_t^2(s, s') \rangle_{s' \in \mathbb{S}}$

Exploration benefits

- Agent visits different regions
- Avoiding the dithering effect of random walk

Properties of the Score Function

Proposition 2

Relates $f_t(s)$ to π_0 , the stationary distribution of the graph

$$f_t(s) = \left\| \boldsymbol{p}_t^{(s)} - \boldsymbol{\pi}_0 \right\|^2$$

$$f_t(s) \le \omega_2^{2t} \left(\frac{1}{\pi_0(s)} - 1 \right)$$

• PageRank algorithm [Page et al. '99, Kleinberg '99]

Exploration benefits

- Diffusion options lead to states for which $\pi_0(s)$ is small
- Rarely visited by an uninformed random walk

Extensions and Scaling Up

- Extending diffusion options to stochastic domains
 - Stochastic domains \rightarrow can lead to asymmetric matrices
 - We use polar decomposition on the graph Laplacian [Mhaskar '18]
- Scaling up to large scale domains/function approximation case
 [Wu et al. '19], [Jinnai et al. '20]
- See ICML paper for further discussion and results

Summary

- We introduced theoretically motivated options
- Analysis based on concepts from manifold learning
- Diffusion options encourage exploration
 - Lead to distant states in term of diffusion distance
 - Compensate for low **stationary distribution** values
- Empirically demonstrated improved performance
 - Both learning and exploration

Thank you

"Option Discovery in the Absence of Rewards with Manifold Analysis", A. Bar, R. Talmon and R. Meir, ICML 2020