Learning Flat Latent Manifolds with VAEs

Nutan Chen¹, Alexej Klushyn¹, Francesco Ferroni², Justin Bayer¹, Patrick van der Smagt¹

¹Machine Learning Research Lab, Volkswagen Group, Munich, Germany

²Autonomous Intelligent Driving GmbH, Munich, Germany

ICML 2020

Introduction

Problem statement

Introduction

Problem statement

The goal of this study

a latent representation, where the Euclidean metric is a proxy for the similarity between data points

Background on Riemannian distance with VAEs

The observation-space length is defined as [CKK⁺18]:

$$L(\gamma) = \int_0^1 \sqrt{\dot{\gamma}(t)^T \, \mathsf{G}\big(\gamma(t)\big) \, \dot{\gamma}(t)} \, \mathrm{d}t.$$

$$\begin{split} \gamma &: [0,1] \to \mathbb{R}^{N_z} \text{ in the latent space} \\ \mathbf{G}(\mathbf{z}) &= \mathbf{J}(\mathbf{z})^T \mathbf{J}(\mathbf{z}) \text{: Riemannian metric tensor} \\ \mathbf{J} \text{: the Jacobian of the decoder} \\ \mathbf{z} &\in \mathbb{R}^{N_z} \text{: latent variables} \\ \mathbf{x} &\in \mathbb{R}^{N_x} \text{: observable data} \end{split}$$

Background on Riemannian distance with VAEs

The observation-space length is defined as [CKK⁺18]:

$$L(\gamma) = \int_0^1 \sqrt{\dot{\gamma}(t)^T \, \mathsf{G}(\gamma(t)) \, \dot{\gamma}(t)} \, \mathrm{d}t.$$

$$\begin{split} \gamma &: [0,1] \to \mathbb{R}^{N_z} \text{ in the latent space} \\ \mathbf{G}(\mathbf{z}) &= \mathbf{J}(\mathbf{z})^T \mathbf{J}(\mathbf{z}) \text{: Riemannian metric tensor} \\ \mathbf{J} \text{: the Jacobian of the decoder} \\ \mathbf{z} &\in \mathbb{R}^{N_z} \text{: latent variables} \\ \mathbf{x} &\in \mathbb{R}^{N_x} \text{: observable data} \end{split}$$

observation-space distance:

$$D = \min_{\gamma} L(\gamma)$$

$D \propto \|\mathbf{z}(1) - \mathbf{z}(0)\|_2$ $\mathbf{G} \propto \mathbb{1}$

$$D \propto \|\mathbf{z}(1) - \mathbf{z}(0)\|_2$$

 $\mathbf{G} \propto \mathbb{1}$

- flexible prior
- regularise the Jacobian of the decoder
- data augmentation in the low density area

$$\begin{split} \mathcal{L}_{\mathsf{VHP-FMVAE}}(\theta,\phi,\Theta,\Phi;\lambda,\eta,c^2) \\ &= \underbrace{\mathcal{L}_{\mathsf{VHP}}(\theta,\phi,\Theta,\Phi;\lambda)}_{\text{loss of the VHP-VAE [KCK^+19]}} \\ &+ \eta \underbrace{\mathbb{E}_{\mathbf{x}_{i,j} \sim p_{\mathcal{D}}(\mathbf{x})} \mathbb{E}_{\mathbf{z}_{i,j} \sim q_{\phi}(\mathbf{z}|\mathbf{x}_{i,j})} \big[\|\mathbf{G}(g(\mathbf{z}_i,\mathbf{z}_j)) - c^2 \mathbb{1}\|_2^2 \big]}_{\text{regulariser}}, \end{split}$$

 $\begin{aligned} &\eta: \text{ hyper-parameter} \\ &c: \text{ scaling factor} \\ &p_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta(\mathbf{x} - \mathbf{x}_i) \text{ is the empirical distribution of the data} \\ &\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^{N} \end{aligned}$

$$\begin{split} \mathcal{L}_{\mathsf{VHP-FMVAE}}(\theta,\phi,\Theta,\Phi;\lambda,\eta,c^2) \\ = \underbrace{\mathcal{L}_{\mathsf{VHP}}(\theta,\phi,\Theta,\Phi;\lambda)}_{\mathsf{loss of the VHP-VAE}} \\ + \eta \underbrace{\mathbb{E}_{\mathbf{x}_{i,j} \sim p_{\mathcal{D}}(\mathbf{x})} \mathbb{E}_{\mathbf{z}_{i,j} \sim q_{\phi}(\mathbf{z}|\mathbf{x}_{i,j})} \big[\| \mathbf{G}(g(\mathbf{z}_i,\mathbf{z}_j)) - \mathbf{c}^2 \mathbf{1} \|_2^2 \big]}_{\mathsf{regulariser}}, \end{split}$$

scaling factor

$$c^{2} = \frac{1}{N_{z}} \mathbb{E}_{\mathbf{x}_{i,j} \sim p_{\mathcal{D}}(\mathbf{x})} \mathbb{E}_{\mathbf{z}_{i,j} \sim q_{\phi}(\mathbf{z}|\mathbf{x}_{i,j})} [\operatorname{tr}(\mathbf{G}(g(\mathbf{z}_{i}, \mathbf{z}_{j})))].$$

$$\begin{aligned} \mathcal{L}_{\mathsf{VHP-FMVAE}}(\theta,\phi,\Theta,\Phi;\lambda,\eta,c^2) \\ = \underbrace{\mathcal{L}_{\mathsf{VHP}}(\theta,\phi,\Theta,\Phi;\lambda)}_{\text{loss of the VHP-VAE}} \\ + \eta \underbrace{\mathbb{E}_{\mathbf{x}_{i,j}\sim \mathcal{P}_{\mathcal{D}}(\mathbf{x})} \mathbb{E}_{\mathbf{z}_{i,j}\sim q_{\phi}(\mathbf{z}|\mathbf{x}_{i,j})} [\|\mathbf{G}(\mathbf{g}(\mathbf{z}_i,\mathbf{z}_j)) - c^2 \mathbb{1}\|_2^2]}_{\text{regulariser}}, \end{aligned}$$

mixup [ZCDLP18] in the latent space

$$g(\mathbf{z}_i,\mathbf{z}_j) = (1-\alpha)\,\mathbf{z}_i + \alpha\,\mathbf{z}_j,$$

with $\mathbf{x}_i, \mathbf{x}_j \sim p_D(\mathbf{x}), \, \mathbf{z}_i \sim q_\phi(\mathbf{z}|\mathbf{x}_i), \, \mathbf{z}_j \sim q_\phi(\mathbf{z}|\mathbf{x}_j)$, and $\alpha \sim U(-\alpha_0, 1 + \alpha_0)$.

Visualisation of equidistances on 2D latent space

Round, homogeneous contour plots indicate that $G(z) \propto 1$.

Smoothness of Euclidean interpolations in the latent space

(a) VHP-FMVAE

(b) VHP-VAE

VHP-FMVAE-SORT for MOT16 [MLTR⁺16] Object-Tracking Database

Method	Тур	e	ID	F₁↑	IDP↑	IDR	† Re	ecall↑	Precisi	on↑	FAR↓	MT↑
VHP-FMVAE-SORT $\eta = 300$ (ours)	unsu	upervise	d 63	3.7	77.0	54.3	36	5.0	92.3	3	1.12	158
VHP-FMVAE-SORT $\eta = 3000$ (ours) VHP-VAE-SORT	unsi unsi	upervise upervise	d <mark>64</mark> d 60	1.2).5	77.6 72.3	54. 52.	86 16	5.1 5.8	92.3 91.4	3 1	1.13 1.28	162 170
SORT [BGO ⁺ 16]	n.a.		57	7.0	67.4	49.4	4 (i6.4	90.6	5	1.44	158
DeepSORT [WBP17]	supe	ervised	64	1.7	76.9	55.	B 6	6.7	91.9	9	1.22	180
	D.T.		50.									<u></u>
Method	РIĻ	ML↓	FP↓	FN	I↓ II	Js↓	⊦мџ	MOI	A↑N	1019	↑M	01AL↑
VHP-FMVAE-SORT $\eta = 300$ (ours)	269	90	5950	385	92 6	16	1143	59.	1	81.8		59.7
VHP-FMVAE-SORT $\eta = 3000$ (ours)	265	90	6026	385	15 5	98	1163	59.	1	81.8		59.7
VHP-VAE-SORT	266	81	6820	377	39 6	93	1264	59.	0	81.6		59.6
SORT	275	84	7643	370	71 1	486	1515	58.	2	81.9		59.5

VHP-FMVAE-SORT for MOT16 Object-Tracking Database

Conclusion

- Euclidean metric is a proxy for the data similarity.
- ▶ The proposed method nears that of supervised approaches.

- Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft, Simple online and realtime tracking, IEEE ICIP, 2016, pp. 3464–3468.
- Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick van der Smagt, *Metrics for deep generative models*, AISTATS, 2018, pp. 1540–1550.
- Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der Smagt, *Learning hierarchical priors in VAEs*, NeurIPS (2019).
- Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler, *Mot16: A benchmark for multi-object tracking*, arXiv preprint arXiv:1603.00831 (2016).
- Nicolai Wojke, Alex Bewley, and Dietrich Paulus, Simple online and realtime tracking with a deep association metric, IEEE International Conference on Image Processing, 2017, pp. 3645–3649.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz, *mixup: Beyond empirical risk minimization*, International Conference on Learning Representations (2018).