Learning Algebraic Multigrid using Graph Neural Networks

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, Irad Yavneh

Goal: Large scale linear systems

- Solve Ax = b
- A is huge, need O(n) solution!
- Some applications:
 - Discretization of PDEs

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

• Sparse graph analysis

Efficient linear solvers

• Decades of research on efficient iterative solvers for largescale systems

• We focus on Algebraic Multigrid (AMG) solvers

• Can we use machine learning to improve AMG solvers?

• Follow-up to Greenfeld et al. (2019) on Geometric Multigrid

What AMG does

- AMG works by successively coarsening the system of equations, and solving on multiple scales
- **Prolongation** operator *P* that creates the hierarchy
- We want to learn a mapping $P_{\theta}(A)$ with **fast convergence**

Learning P

• Unsupervised loss function over distribution \mathcal{D} : $\min_{\theta} \mathbb{E}_{A \sim \mathcal{D}} \rho \left(M(A, P_{\theta}(A)) \right)$

• $\rho(M(A, P_{\theta}(A)))$ measures the convergence factor of the solver

• $P_{\theta}(A)$ is a NN mapping system A to prolongation operator P

Graph neural network

• Sparse matrices can be represented as graphs – we use a **Graph Neural Network** as the mapping $P_{\theta}(A)$

Benefits of our approach

• Unsupervised training – rely on algebraic properties

• Generalization –learn general *rules* for wide class of problems

 Efficient training – Fourier analysis reduces computational burden

Sample result; lower is better, ours is lower!

Outline

- Overview of AMG
- Learning objective
- Graph neural network
- Results

- 1st ingredient of AMG: Relaxation
- System of equations: $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i$

• Rearrange:
$$x_i = \frac{1}{a_{ii}} (b_i - \sum_{j \neq i} a_{ij} x_j)$$

• Start with an **initial guess** $x_i^{(0)}$

• **Iterate** until convergence:
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$

Relaxation smooths the error

 Since relaxation is a local procedure, its effect is to smooth out the error

 How to accelerate relaxation by dealing with low-frequency errors?

2nd ingredient of AMG: Coarsening

• Smooth error, and then coarsen

• Error is no longer smooth on coarse grid; relaxation is fast again!

Putting it all together

Learning objective

Prolongation operator

• Focus of AMG is prolongation operator *P* for defining scales and moving between them

• *P* needs to be sparse for efficiency, but also approximate well smooth errors

Learning P

- Quality can be quantified by estimating by how much the error is reduced each iteration:
 - $e^{(k+1)} = M(A, P)e^{(k)}$
 - $M(A,P) = S(I P[P^TAP]^{-1}P^TA)S$
 - Asymptotically: $||e^{(k+1)}|| \approx \rho(M) ||e^{(k)}||$
 - Spectral radius: $\rho(M) = \max\{|\lambda_1|, ..., |\lambda_n|\}$
- Our learning objective:

$$\min_{\theta} \mathbb{E}_{A\sim\mathcal{D}} \rho\left(M(A, P_{\theta}(A))\right)$$

Graph neural network

Representing P_{θ}

• Sparse matrix $A \in \mathbb{R}^{n \times n}$ to sparse matrix $P \in \mathbb{R}^{n \times n_c}$

• Mapping should be **efficient**

• Matrices can be represented as graphs with edge weights

Representing P_{θ}

	/ 2.7	-0.5	-0.5	0	-1.7	0	0 \
1	-0.5	7.7	-4.9	-0.6	0	0	-1.7
	-0.5	-4.9	6.2	0	0	-0.8	0
	0	-0.6	0	2.9	-0.6	0	-1.7
	-1.7	0	0	-0.6	13.1	-10.8	0
	0	0	-0.8	0	-10.8	11.6	0 /
	/ 0	-1.7	0	-1.7	0	0	3.4 /

(7)

Output P

Input A

GNN architecture

Message Passing architectures can handle any graph, and have O(n) runtime
Image of the second s

• Graph Nets framework from Battaglia et al. (2018) generalize many MP variants, handle edge features

3

Results

Spectral clustering

- Bottleneck is an iterative eigenvector algorithm that uses a linear solver
- Evaluate number of iterations required to reach convergence
- Train network on dataset of small 2D clusters, test on various 2D and 3D distributions

Conclusion

- Algebraic Multigrid is an **effective** O(n) **solver** for a wide class of linear systems Ax = b
- Main challenge in AMG is constructing **prolongation operator** *P*, which controls how information is passed between grids
- We use an O(n), edge-based GNN to learn a mapping $P_{\theta}(A)$, without supervision
- **GNN generalizes** to larger problems, with different distributions of sparsity pattern and elements

Take home messages

• In a well-developed field, might make sense to apply ML to a part of the algorithm

• Graph neural networks can be an effective tool for **learning sparse linear systems**