Quantized Decentralized Stochastic Learning over Directed Graphs

Hossein Taheri¹

Joint work with Aryan Mokhtari², Hamed Hassani³, and Ramtin Pedarsani¹

¹University of California, Santa Barbara ²University of Texas, Austin ³University of Pennsylvania

Thirty-seventh International Conference on Machine Learning (ICML), 2020

Decentralized Optimization

 Decentralized Stochastic Learning involves multiple agents or nodes that collect data, and want to learn an ML model collaboratively.

Decentralized Optimization

- Decentralized Stochastic Learning involves multiple agents or nodes that collect data, and want to learn an ML model collaboratively.
- Applications including federated learning, multi-agent robotics systems, sensor networks, etc.

Decentralized Optimization

- Decentralized Stochastic Learning involves multiple agents or nodes that collect data, and want to learn an ML model collaboratively.
- Applications including federated learning, multi-agent robotics systems, sensor networks, etc.
- In many cases, communication links are asymmetric due to failures and bottlenecks and communication is done over a directed graph [Tsianos et al. 2012, Nedic et al. 2014, Assran et al. 2020].

This Talk

- Link failure: Nodes communicate over a directed graph
- High communication cost: Nodes communicate compressed information Q(x)
 Compression encreter Q: Dd

Compression operator $Q: \mathbb{R}^d
ightarrow \mathbb{R}^d$

Introduction: Push-sum Algorithm

Decentralized optimization over *directed* graphs with *exact* communication:

$$\begin{cases} \mathbf{x}_i(t+1) &= \sum_{j=1}^n w_{ij} \, \mathbf{x}_j(t) - \alpha(t) \nabla f_i\left(\mathbf{z}_i(t)\right) \\ y_i(t+1) &= \sum_{j=1}^n w_{ij} \, y_j(t) \\ \mathbf{z}_i(t+1) &= \mathbf{x}_i(t+1)/y_i(t+1) \end{cases}$$

Introduction: Push-sum Algorithm

Decentralized optimization over *directed* graphs with *exact* communication:

$$\begin{cases} \mathbf{x}_i(t+1) &= \sum_{j=1}^n w_{ij} \, \mathbf{x}_j(t) - \alpha(t) \nabla f_i\left(\mathbf{z}_i(t)\right) \\ y_i(t+1) &= \sum_{j=1}^n w_{ij} \, y_j(t) \\ \mathbf{z}_i(t+1) &= \mathbf{x}_i(t+1)/y_i(t+1) \end{cases}$$

• [Nedic et al. 2014] prove that for convex, Lipschitz objectives and $\alpha(t) = \mathcal{O}(1/\sqrt{T}) \Rightarrow ||f(\tilde{\mathbf{z}}_i(T)) - f^*|| = \mathcal{O}(1/\sqrt{T}),$ $\tilde{\mathbf{z}}_i(T) = \frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_i(t)$

Introduction: Push-sum Algorithm

Decentralized optimization over *directed* graphs with *exact* communication:

$$\begin{cases} \mathbf{x}_i(t+1) &= \sum_{j=1}^n w_{ij} \, \mathbf{x}_j(t) - \alpha(t) \nabla f_i\left(\mathbf{z}_i(t)\right) \\ y_i(t+1) &= \sum_{j=1}^n w_{ij} \, y_j(t) \\ \mathbf{z}_i(t+1) &= \mathbf{x}_i(t+1)/y_i(t+1) \end{cases}$$

- [Nedic et al. 2014] prove that for convex, Lipschitz objectives and $\alpha(t) = \mathcal{O}(1/\sqrt{T}) \Rightarrow ||f(\tilde{\mathbf{z}}_i(T)) - f^*|| = \mathcal{O}(1/\sqrt{T}),$ $\tilde{\mathbf{z}}_i(T) = \frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_i(t)$
- How can we incorporate quantized message exchanging for this setting?

Proposed Algorithm: Quantized Push-sum

 We propose the quantized Push-sum algorithm for stochastic optimization

$$\begin{split} \mathbf{q}_i(t) &= Q\left(\mathbf{x}_i(t) - \widehat{\mathbf{x}}_i(t)\right) \\ \text{for all nodes } k \in \mathcal{N}_i^{out} \text{ and } j \in \mathcal{N}_i^{in} \quad \text{do} \\ &\text{send } \mathbf{q}_i(t) \text{ and } y_i(t) \text{ to } k \text{ and receive } \mathbf{q}_i(t) \text{ and } y_j(t) \text{ from } j. \\ &\widehat{\mathbf{x}}_j(t+1) = \widehat{\mathbf{x}}_j(t) + \mathbf{q}_j(t) \\ &\text{end for} \\ \mathbf{v}_i(t+1) = \mathbf{x}_i(t) - \widehat{\mathbf{x}}_i(t+1) + \sum_{j \in \mathcal{N}_i^{jn}} w_{ij} \widehat{\mathbf{x}}_j(t+1) \\ &y_i(t+1) = \sum_{j \in \mathcal{N}_i^{jn}} w_{ij} y_j(t) \\ &\mathbf{z}_i(t+1) = \mathbf{v}_i(t+1) / y_i(t+1) \\ &\mathbf{x}_j(t+1) = \mathbf{v}_i(t+1) - \alpha(t+1) \nabla F_i(\mathbf{z}_i(t+1)) \end{split}$$

Proposed Algorithm: Quantized Push-sum

 We propose the quantized Push-sum algorithm for stochastic optimization

 $\begin{aligned} \mathbf{q}_i(t) &= Q\left(\mathbf{x}_i(t) - \widehat{\mathbf{x}}_i(t)\right) \\ \text{for all nodes } k \in \mathcal{N}^{out} \text{ and } j \in \mathcal{N}^{in}_i \text{ do} \\ &\text{send } \mathbf{q}_i(t) \text{ and } y_i(t) \text{ to } k \text{ and receive } \mathbf{q}_j(t) \text{ and } y_j(t) \text{ from } j. \\ &\widehat{\mathbf{x}}_j(t+1) = \widehat{\mathbf{x}}_j(t) + \mathbf{q}_j(t) \\ \text{end for} \\ &\mathbf{v}_i(t+1) = \mathbf{x}_i(t) - \widehat{\mathbf{x}}_i(t+1) + \sum_{j \in \mathcal{N}^{jn}_i} w_{ij} \widehat{\mathbf{x}}_j(t+1) \\ &y_i(t+1) = \sum_{j \in \mathcal{N}^{jn}_i} w_{ij} y_j(t) \\ &\mathbf{z}_i(t+1) = \mathbf{v}_i(t+1) / y_i(t+1) \\ &\mathbf{x}_j(t+1) = \mathbf{v}_i(t+1) - \alpha(t+1) \nabla F_i(\mathbf{z}_i(t+1)) \end{aligned}$

• $\widehat{\mathbf{x}}_{j}(t)$ is stored in all out-neighbors of node j

Proposed Algorithm: Quantized Push-sum

 We propose the quantized Push-sum algorithm for stochastic optimization

$$\begin{split} & \mathbf{q}_i(t) = Q\left(\mathbf{x}_i(t) - \widehat{\mathbf{x}}_i(t)\right) \\ & \text{for all nodes } k \in \mathcal{N}_i^{out} \text{ and } j \in \mathcal{N}_i^{in} \text{ do} \\ & \text{send } \mathbf{q}_i(t) \text{ and } y_i(t) \text{ to } k \text{ and receive } \mathbf{q}_j(t) \text{ and } y_j(t) \text{ from } j. \\ & \widehat{\mathbf{x}}_j(t+1) = \widehat{\mathbf{x}}_j(t) + \mathbf{q}_j(t) \\ & \text{end for} \\ & \mathbf{v}_i(t+1) = \mathbf{x}_i(t) - \widehat{\mathbf{x}}_i(t+1) + \sum_{j \in \mathcal{N}_i^{jn}} w_{ij} \widehat{\mathbf{x}}_j(t+1) \\ & y_i(t+1) = \sum_{j \in \mathcal{N}_i^{jn}} w_{ij} y_j(t) \\ & \mathbf{z}_i(t+1) = \mathbf{v}_i(t+1) / y_i(t+1) \\ & \mathbf{x}_i(t+1) = \mathbf{v}_i(t+1) - \alpha(t+1) \nabla F_i(\mathbf{z}_i(t+1)) \end{split}$$

• $\hat{\mathbf{x}}_{j}(t)$ is stored in all out-neighbors of node j• $\hat{\mathbf{x}}_{j}(t) \rightarrow \mathbf{x}_{j}(t)$ therefore $\mathbf{q}_{j}(t) \rightarrow \mathbf{0}$ (Similar to [Koloskova et al. 2018])

Assumptions on graph and connectivity

Assumptions on graph and connectivity

Strongly connected graph and $W_{ij} \ge 0$, $W_{ii} > 0$, $\forall i, j \in [n]$

Assumptions on graph and connectivity

• Strongly connected graph and $W_{ij} \ge 0$, $W_{ii} > 0$, $\forall i, j \in [n]$ Note that this results in $||W^t - \phi \mathbf{1}'|| \le C\lambda^t$, $\forall t \ge 1$ where $\phi \in \mathbb{R}^n$, $0 < \lambda < 1$

Assumptions on graph and connectivity

• Strongly connected graph and $W_{ij} \ge 0$, $W_{ii} > 0$, $\forall i, j \in [n]$ Note that this results in $||W^t - \phi \mathbf{1}'|| \le C\lambda^t$, $\forall t \ge 1$ where $\phi \in \mathbb{R}^n$, $0 < \lambda < 1$

Assumptions on local objectives

• Lipschitz Local Gradients,
$$\left\| \nabla f_i(\mathbf{y}) - \nabla f_i(\mathbf{x}) \right\| \leq L \left\| \mathbf{y} - \mathbf{x} \right\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$

Assumptions on graph and connectivity

• Strongly connected graph and $W_{ij} \ge 0$, $W_{ii} > 0$, $\forall i, j \in [n]$ Note that this results in $||W^t - \phi \mathbf{1}'|| \le C\lambda^t$, $\forall t \ge 1$ where $\phi \in \mathbb{R}^n$, $0 < \lambda < 1$

Assumptions on local objectives

■ Lipschitz Local Gradients,
$$\left\| \nabla f_i(\mathbf{y}) - \nabla f_i(\mathbf{x}) \right\| \le L \left\| \mathbf{y} - \mathbf{x} \right\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$

■ Bounded Stochastic Gradients, $\mathbb{E}_{\zeta_i \sim D_i} \left\| \nabla F_i(\mathbf{x}, \zeta_i) \right\|^2 \leq D^2, \ \forall \mathbf{x} \in \mathbb{R}^d$

Assumptions on graph and connectivity

• Strongly connected graph and $W_{ij} \ge 0$, $W_{ii} > 0$, $\forall i, j \in [n]$ Note that this results in $||W^t - \phi \mathbf{1}'|| \le C\lambda^t$, $\forall t \ge 1$ where $\phi \in \mathbb{R}^n$, $0 < \lambda < 1$

Assumptions on local objectives

■ Lipschitz Local Gradients,
$$\left\|\nabla f_i(\mathbf{y}) - \nabla f_i(\mathbf{x})\right\| \leq L \left\|\mathbf{y} - \mathbf{x}\right\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$$

Bounded Stochastic Gradients, $\mathbb{E}_{\zeta_i \sim \mathcal{D}_i} \left\| \nabla F_i(\mathbf{x}, \zeta_i) \right\|^2 \leq D^2, \ \forall \mathbf{x} \in \mathbb{R}^d$

Bounded Variance, $\mathbb{E}_{\zeta_i \sim \mathcal{D}_i} \left\| \nabla F_i(\mathbf{x}, \zeta_i) - \nabla f_i(\mathbf{x}) \right\|^2 \le \sigma^2, \ \forall \mathbf{x} \in \mathbb{R}^d$

Assumption on quantization function

The quantization function $Q: \mathbb{R}^d o \mathbb{R}^d$ satisfies for all $\pmb{x} \in \mathbb{R}^d$,

$$\mathbb{E}_{\boldsymbol{Q}}\left[\left\|\boldsymbol{Q}(\boldsymbol{x})-\boldsymbol{x}\right\|^{2}\right] \leq \omega^{2} \left\|\boldsymbol{x}\right\|^{2}, \qquad (1)$$

where $0 \le \omega < 1$.

Define
$$\gamma := \|W - \mathbb{I}\|_2$$
 and $C(\lambda, \gamma) := \frac{1}{\sqrt{6(1 + \frac{6C^2}{(1-\lambda)^2})(1+\gamma^2)}}$

Theorem 1

Assume local objectives f_i are convex for all $i \in [n]$. By choosing $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{8L\sqrt{T}}$, for all $T \geq 1$, it holds that,

$$\mathbb{E} f\left(\frac{1}{T}\sum_{t=1}^{T} \mathbf{z}_i(t+1)\right) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

Define
$$\gamma := \|W - \mathbb{I}\|_2$$
 and $C(\lambda, \gamma) := \frac{1}{\sqrt{6(1 + \frac{6C^2}{(1-\lambda)^2})(1+\gamma^2)}}$

Theorem 1

Assume local objectives f_i are convex for all $i \in [n]$. By choosing $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{8L\sqrt{T}}$, for all $T \geq 1$, it holds that,

$$\mathbb{E} f\left(\frac{1}{T}\sum_{t=1}^{T} \mathbf{z}_i(t+1)\right) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

Time average of local parameters z_i converges to the exact solution!

Define
$$\gamma := \|W - \mathbb{I}\|_2$$
 and $C(\lambda, \gamma) := \frac{1}{\sqrt{6(1 + \frac{6C^2}{(1-\lambda)^2})(1+\gamma^2)}}$

Theorem 1

Assume local objectives f_i are convex for all $i \in [n]$. By choosing $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{8L\sqrt{T}}$, for all $T \geq 1$, it holds that,

$$\mathbb{E} f\left(\frac{1}{T}\sum_{t=1}^{T} \mathbf{z}_i(t+1)\right) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

- Time average of local parameters z_i converges to the exact solution!
- The convergence rate is the same as the case of undirected graphs with exact communication (e.g. [Yuan et al. 2016])

Define
$$\gamma := \|W - \mathbb{I}\|_2$$
 and $C(\lambda, \gamma) := \frac{1}{\sqrt{6(1 + \frac{6C^2}{(1-\lambda)^2})(1+\gamma^2)}}$

Theorem 1

Assume local objectives f_i are convex for all $i \in [n]$. By choosing $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{8L\sqrt{T}}$, for all $T \geq 1$, it holds that,

$$\mathbb{E} f\left(\frac{1}{T}\sum_{t=1}^{T} \mathbf{z}_i(t+1)\right) - f^* = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

- Time average of local parameters z_i converges to the exact solution!
- The convergence rate is the same as the case of undirected graphs with exact communication (e.g. [Yuan et al. 2016])
 Error is proportional to 1/√n

Theorem 2

Let $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{L\sqrt{T}}$. Then after sufficiently large number of iterations, $(T \geq 4n)$, it holds that

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E} \left\| \nabla f\left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}(t)\right) \right\|^{2} = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

Theorem 2

Let $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{L\sqrt{T}}$. Then after sufficiently large number of iterations, $(T \geq 4n)$, it holds that

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E} \left\| \nabla f\left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}(t)\right) \right\|^{2} = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

Average of local parameters x_i(t) converges a stationary point!

Theorem 2

Let $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{L\sqrt{T}}$. Then after sufficiently large number of iterations, $(T \geq 4n)$, it holds that

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E} \left\| \nabla f\left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}(t)\right) \right\|^{2} = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

- Average of local parameters x_i(t) converges a stationary point!
- Again, the convergence rate is the same as the case of undirected graphs with exact communication(e.g. [Lian et al. 2017])

Theorem 2

Let $\omega \leq C(\lambda, \gamma)$ and $\alpha = \frac{\sqrt{n}}{L\sqrt{T}}$. Then after sufficiently large number of iterations, $(T \geq 4n)$, it holds that

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E} \left\| \nabla f\left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}(t)\right) \right\|^{2} = \mathcal{O}\left(\frac{1}{\sqrt{nT}}\right)$$

- Average of local parameters x_i(t) converges a stationary point!
- Again, the convergence rate is the same as the case of undirected graphs with exact communication(e.g. [Lian et al. 2017])
- Error is proportional to $1/\sqrt{n}$

Numerical Experiments

•
$$f(\mathbf{x}) = \frac{1}{2nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \left\| \mathbf{x} - \zeta_{j}^{i} \right\|^{2}$$
,

Data-set size=100, mini-batch size =1, dimension= 256, n=10.

■ 5x speedup in communication time.

Numerical Experiments

Neural network with one hidden layer with 10 hidden units
Mini-batch size = 10 (Left) & 100 (Right), n = 10

■ 5x speed up in communication time.

- We proposed the quantized push-sum algorithm for collaborative optimization.
- The proposed algorithm converges with optimal convergence rates w.r.t. vanilla push-sum protocol.

- We proposed the quantized push-sum algorithm for collaborative optimization.
- The proposed algorithm converges with optimal convergence rates w.r.t. vanilla push-sum protocol.
- Interesting future directions: Communication-efficient algorithms for collaborative optimization with "asynchrony" or "periodic averaging".