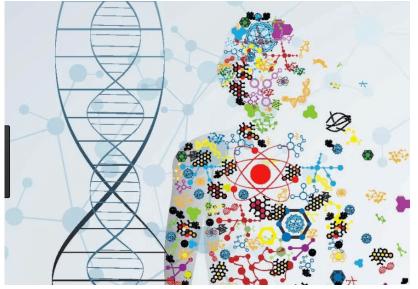
Coresets for Data-efficient Training of Machine Learning Models

Baharan Mirzasoleiman*, Jeff Bilmes**, Jure Leskovec*

Machine Learning Becomes Mainstream

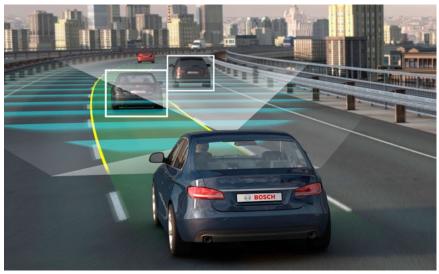
Personalized medicine



Finance

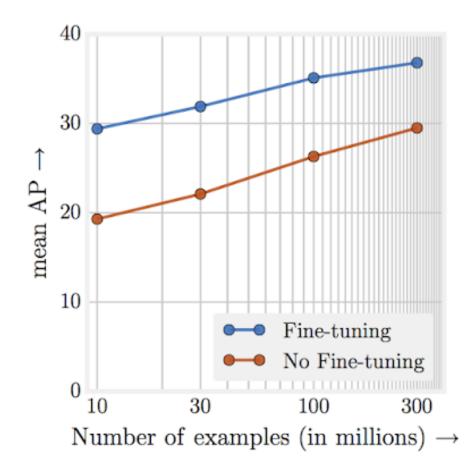
Robotics

Autonomous cars



Data is the Fuel for Machine Learning

Example: object detection



Object detection performance in mAP@[.5,.95] on COCO minival [iii Google AI]

Problem 1: Training on Large Data is Expensive

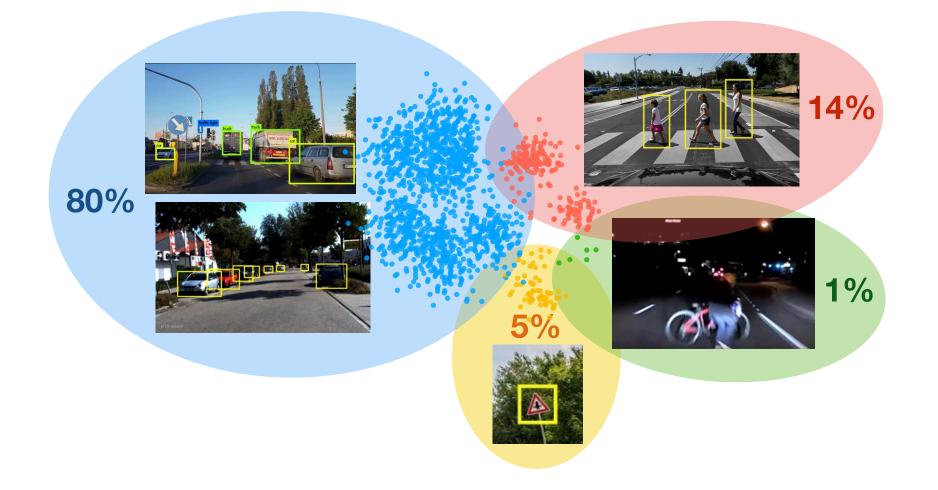
Example: training a **single** deep model for NLP (with NAS)

[SGM'19]

5x a lifetime of a car CO2

Problem 2: What We Care About is Underrepresented

Example: self driving data



How can we find the "right" data for efficient machine learning?

Setting: Training Machine Learning Models

Often reduces to minimizing a regularized empirical risk function

Feature Label Training data volume: $\{(x_i, y_i), i \in V\}$ $w_* \in \arg \min_{w \in \mathscr{W}} f(w), \quad f(w) = \sum_{i \in V} f_i(w) + r(w), \quad f_i(w) = l(w, (x_i, y_i))$ Loss function associated with training example $i \in V$

Examples:

- Convex f(w): Linear regression, logistic regression, ridge regression, regularized support vector machines (SVM)
- **Non-convex** f(w): Neural networks

Setting: Training Machine Learning Models

Incremental gradient methods are used to train on large data

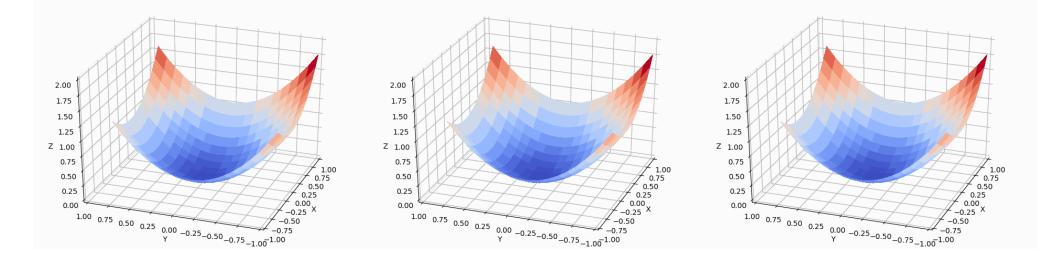
• Sequentially step along the gradient of functions f_i

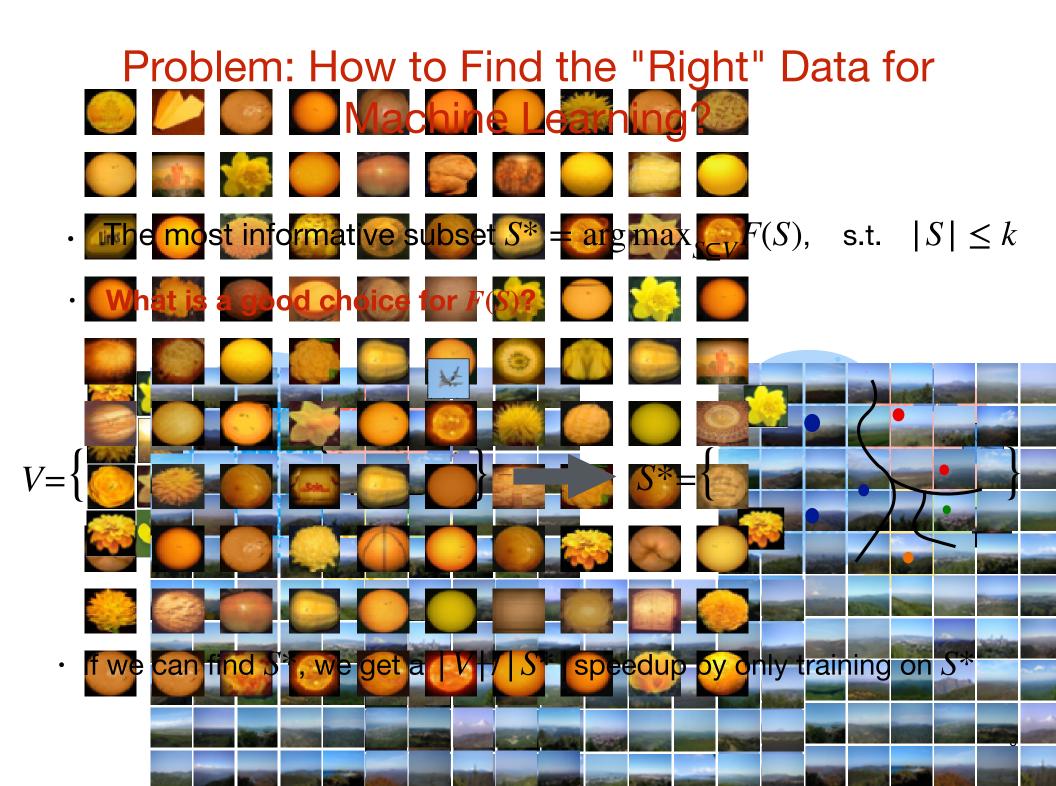
$$w_i^k = w_{i-1}^k - \alpha_k \nabla f_i(w_{i-1})$$

• Consider every $\nabla f_i(.)$ as an unbiased estimate of $\nabla f(.) = \sum \nabla f_i(.)$

 $i \in V$

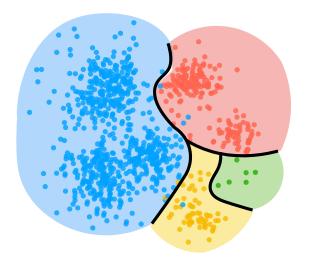
Therefore, they are slow to converge





Finding S^* is Challenging

- 1. How to chose an informative subset for training?
 - Points close to decision boundary vs. a diverse subset?
- 2. Finding S^* must be fast
 - · Otherwise we don't get any speedup
- 3. We also need to decide on the step-sizes
- 4. We need theoretical guarantees
 - For the quality of the trained model
 - For convergence of incremental gradient methods on the subset



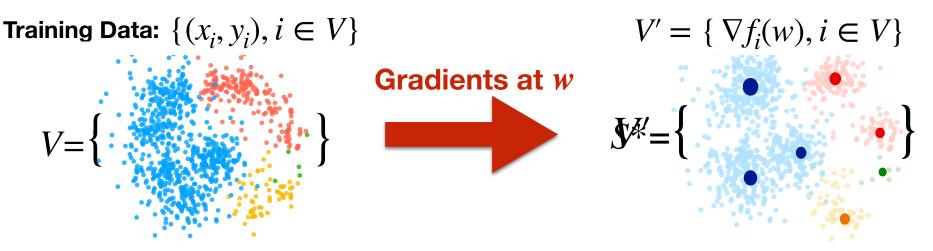
Our Approach: Learning from Coresets

Idea: select the smallest subset S^* and weights γ that closely estimates the full gradient

$$S^* = \arg\min_{S \subseteq V, \gamma_j \ge 0 \ \forall j} |S|, \quad \text{s.t.} \quad \max_{w \in \mathcal{W}} \|\sum_{i \in V} \nabla f_i(w) - \sum_{j \in S} \gamma_j \nabla f_j(w)\| \le \epsilon \text{ .}$$

Full gradient Gradient of S

Solution: for every $w \in \mathcal{W}$, S^* is the set of **exemplars** of all the data points in the **gradient space**



11

Our Approach: Learning from Coresets

How can we find exemplars in big datasets?

• Exemplar clustering is submodular!

$$F(S^*) = \sum_{i \in V} \min_{j \in S^*} \|\nabla f_i(w) - \nabla f_j(w)\| \le \epsilon$$

Submodularity is a natural diminishing returns property

 $\forall A \subseteq B \text{ and } B \not\ni x : \quad F(A \cup \{x\}) - F(A) \ge F(B \cup \{x\}) - F(B)$

A simple greedy algorithm can find exemplars S^* in large datasets

However, S^* depends on w!

- We have to update S^* after every SGD update

Our approach: Learning from Coresets

Can we find a subset S^* that bounds the estimation error for all $w \in \mathcal{W}$? $F(S^*) = \sum_{i \in V} \min_{j \in S^*} \|\nabla f_i(w) - \nabla f_j(w)\| \le \epsilon$

Idea: consider worst-case approximation of the estimation error over the entire parameter space \mathcal{W}

$$F(S^*) = \sum_{i \in V} \min_{j \in S^*} \|\nabla f_i(w) - \nabla f_j(w)\| \le \sum_{i \in V} \min_{j \in S^*} \max_{w \in \mathcal{W}} \|\nabla f_i(w) - \nabla f_j(w)\| \le \epsilon$$

$$d_{ij}$$

$$d_{ij}: \text{ upper-bound on the gradient difference}$$
over the entire parameter space \mathcal{W}

Our approach: Learning from Coresets

How can we efficiently find upper-bounds d_{ii} ?

• **Convex** f(w): Linear/logistic/ridge regression, regularized SVM

$$d_{ij} \leq \text{const.} ||x_i - x_j||$$

 $\mathbf{M} S^*$ can be found as a preprocessing step

• Non-convex f(w): Neural networks Input to the last layer $d_{ij} \leq \text{const.} (\|\nabla_{z_i^{(L)}} f_i(w) - \nabla_{z_j^{(L)}} f_j(w)\|)$ [KF'19]

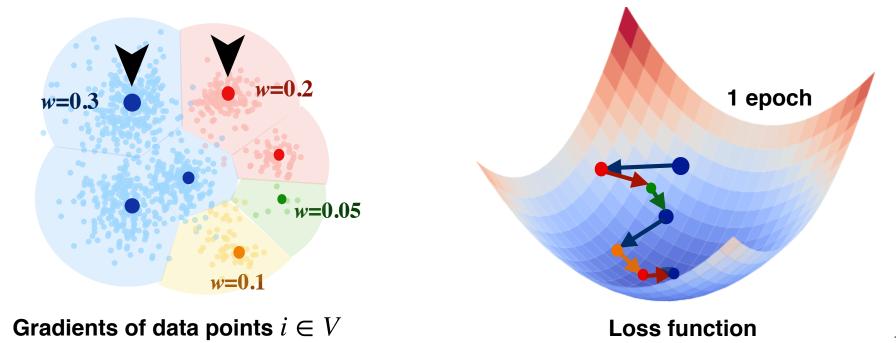
 \mathbf{M} d_{ij} is cheap to compute, but we have to update S^*

Our Approach: CRAIG

Idea: select a weighted subset that closely estimates the full gradient

Algorithm:

- (1) use greedy to find the set of exemplars S^* from dataset V
- (2) weight every elements of S^* by the size of the corresponding cluster
- (3) apply weighted incremental gradient descent on S^{*}



Our approach: CRAIG

Weighted incremental gradient descent on the subset $S \subseteq V$ of exemplars in the gradient space

Theorem: For a μ -strongly convex loss function, CRAIG with decaying step-size $\Theta(1/k^{\tau})$, $\tau < 1$ converges to a $2\epsilon/\mu$ neighborhood of the optimal solution, with a rate of $\mathcal{O}(1/k^{\tau})$

We get up to IVI/ISI speedup!

Existing Techniques

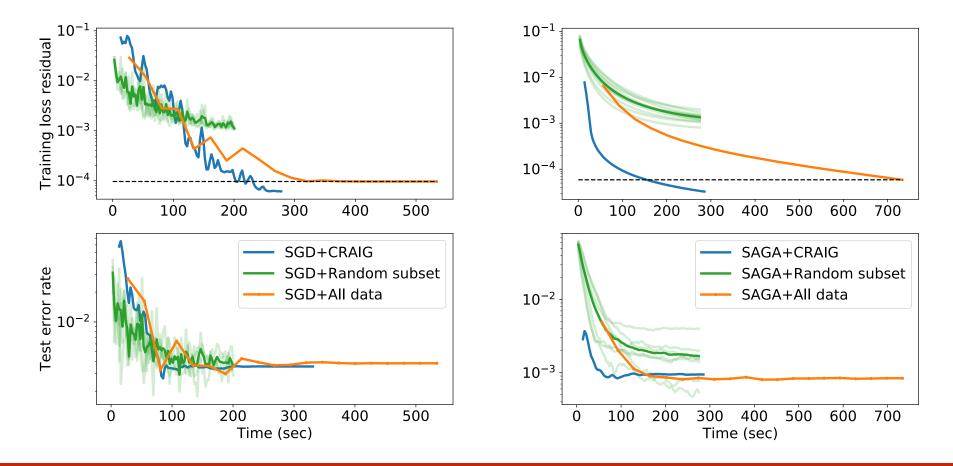
Speeding up stochastic gradient methods

- Variance reduction techniques [JZ'13, DB'14, A'18]
- Choosing better step sizes [KB'14, DHS'11, Z'12]
- Importance sampling [NSW'13, ZZ'14, KF'18]

CRAIG is complementary to all the above methods

Application of CRAIG to Logistic Regression

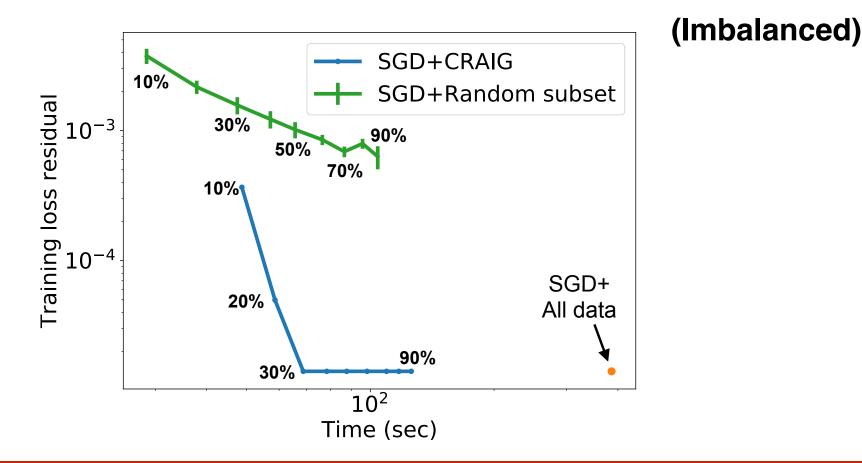
Training on subsets of size 10% of Covtype with 581K points



Up to 6x faster than training on the full data, with the same accuracy

Application of CRAIG to Logistic Regression

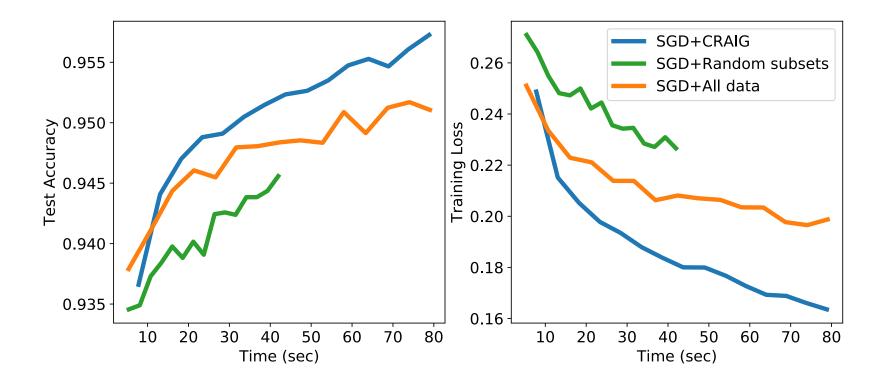
Training on subsets of various size of ljcnn1 with **50K points**



Up to 7x faster than training on the full data, with the same accuracy

Application of CRAIG to Neural Networks

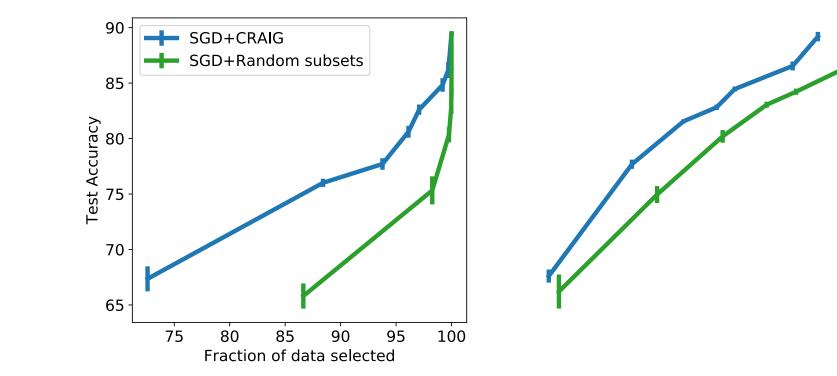
Training on MNIST with a 2-layer neural network with 50K points



2x-3x faster than training on the full data, with better generalization

Application of CRAIG to Deep Networks

Training ResNet20 on subsets of various size from CIFAR10 with 50K points



CRAIG is data-efficient

Summary

- We developed the first rigorous method for dataefficient training of general machine learning models
 - Converges to the near optimal solution
 - Similar convergence rate as Incremental gradient methods
 - Speeds up training by up to 7x for logistic regression and 3x for deep neural networks

Come to our poster for more details!