Learning Task-Agnostic Embedding of Multiple Black-Box Experts for Multi-Task Model Fusion

Nghia Hoang (MIT-IBM Watson AI Lab), **Thanh Lam** (National University of Singapore), Bryan Kian Hsiang Low (National University of Singapore), Patrick Jaillet (MIT)

- Multi-Task Collective Learning
- **Related Literature**
- □ Model Decomposition via Task-Agnostic Embedding
- □ Model Fusion via PAC-Bayes Adaptation
- **Empirical Results**

Collective Learning: Sharing Information improves Performance

Issue: Raw information (data) is private & cannot be shared

Issue: What if models are parameterized differently ?

Our Focus

computation capabilities / different (related) tasks

Black-box setting happens when:

(a) Models have different parameterization / solve different tasks

(a) – to fit different on-board

(b) – to avoid adversarial attack

(Ian Goodfellow, 2014)

(b) Models parameterization cannot be released

Why?

Heterogeneous Models:

- 1. Deep Neural Network (DNN)
- 2. Gaussian Process (GP)
- 3. Decision Tree (DT)
- 4. Human Cognitive Reasoning etc

Idea: Model Fusion using Task-Agnostic Model Embedding

MIT-IBM Watson AI Lab

- □ Multi-Task Collective Learning
- Related Literature
- Model Decomposition via Task-Agnostic Embedding
- □ Model Fusion via PAC-Bayes Adaptation
- **Empirical Results**

Model Agnostic Meta Learning (Finn et al., 2017)

Testing

Idea: sample tasks & learn a base model which Can be adapted to solve any task with little data

Caveat: Existing meta learning algorithm assumes ______ data can be centralized for learning ______

Model Fusion (Hoang et al., 2019)

Model Fusion (recap.): Synthesizing New Model from Observing How Related Models Make Predictions (Without Accessing Local Data) – existing literature will be discussed next!

A new study that emerged from Federated Learning that allows a certain degree of model agnosticity:

Collective Online Learning of Gaussian Processes for Massive Multi-Agent Systems (AAAI-19) (Hoang, Hoang, Low & How) – combine different sparse approximations of Gaussian processes

Collective Model Fusion for Multiple Black-Box Experts (ICML-19) (Hoang, Hoang, Low & Kingsford) – assemble different black-box models into a product of expert (PoE) model

Bayesian Non-parametric Federated Learning of Neural Networks (ICML-19) (Yurochkin, Agrawal, Ghosh, Greenewald, Hoang & Khazaeni) – combine neural networks with different no. of hidden units

Statistical Model Aggregation via Parameter Matching (NeurIPS-19) (Yurochkin, Agrawal, Ghosh, Greenewald & Hoang) – generalize the above to a wider class of model (including GP & DNN)

Watson AI Lab

Learning Task-Agnostic Embedding of Multiple Black-Box Experts for Multi-Task Model Fusion (ICML-20) (Hoang, Lam, Low & Jaillet) — TODAY's FOCUS: A new perspective of model fusion for multi-task setting

Multi-Task Collective Learning

Related Literature

Model Decomposition via Task-Agnostic Embedding

□ Model Fusion via PAC-Bayes Adaptation

Empirical Results

MIT-IBM Watson AI Lab

Task-Agnostic Embedding Model

Learning Task-Agnostic Embedding (without labeled data)

Learning Task-Agnostic Embedding (without labeled data)

Task-Agnostic Embedding Model: From Model to Prototype ③

- □ Multi-Task Collective Learning
- **Related Literature**
- □ Model Decomposition via Task-Agnostic Embedding

ALLab

- Model Fusion via PAC-Bayes Adaptation
- **Empirical Results**

Model Fusion via PAC-Bayes Adaptation

Goal: Optimize the prototype distribution for the new task

Leverage on few-shot data

I minimize empirical loss on few-shot data – may overfit 8

□ Add regularization term ☺

- □ Multi-Task Collective Learning
- **Related Literature**
- □ Model Decomposition via Task-Agnostic Embedding

ALLab

- □ Model Fusion via PAC-Bayes Adaptation
- **Empirical Results**

Empirical Results

Task-Agnostic Decomposition

□ Separate Task-Dependent and Task-Agnostic Information?

MIT-IBM Watson AI Lab

Results:

د د د د	2 2		44.		11.	77.	11.	1		333	331	331	331	331	331	337	333	333	33
W2				*	トレト・	トレト・		111	W ₂	2001						~~~ ~~	~~~ ~~	2 7 7 7 r	333
2 2				111	111	111	111	111		500	200	500	500		~~~	~~~	333	~~~	3
3 3	; }	3	} } w	} }	1	1	1	1))))	3	3	З 3	3 3 /1	3	3	3	3

Fix z:	_				
 Same digit Different styles 	—				
• Different styles	—				
Fix an arbitrary value of z	—				
Plot the x generated from					
$\mathbf{p}_{\theta}(\mathbf{X} \mathbf{W},\mathbf{Z})$ over the w -space	_				
г – т					

Empirical Results

Prototype Visualization

Prototypes are task-agnostic and will be activated differently depending on each input

observations?

Empirical Results

Multi-Task Model Fusion

Qualitative results on standard meta-learning benchmarks

Comparison baseline: Modified-MAML:

- Data for different tasks are private
- Original MAML requires data centralization
- □ Modified-MAML only samples classes within the same task!

Other baselines: Ad-hoc Aggregation Methods (via + & max) & FS

Dataset: MNIST, nMNIST & minilmageNet

Empirical Results – MNIST & nMNIST (2-way) & Mini-Imagenet (5-way)

Multi-Task Model Fusion

Results

Qualitative results on standard meta-learning benchmarks (1-shot)

dataset name

S: test classes were seen U: test classes not seen by any black-boxes

FUSION	\mathbf{B}_+	$\mathbf{B}_{\mathrm{MAX}}$	$\mathbf{B}_{ au_{*}}$ (ours)	$\mathbf{B}_{\mathrm{MAML}}$	FS
MNIST-2-S	96.25 ± 1.06	96.25 ± 1.06	94.25 ± 4.60	92.13 ± 1.60	80.75 ± 13.7
N-MNIST-3-S	99.02 ± 0.71	99.12 ± 0.71	96.25 ± 0.35	80.79 ± 2.06	77.11 ± 7.07
MINIIMAGENET-3-S	87.20 ± 3.75	87.21 ± 3.01	87.10 ± 1.02	41.38 ± 2.13	26.45 ± 0.55
MNIST-2-U	50.25 ± 0.35	50.75 ± 1.06	78.56 ± 2.70	73.92 ± 7.32	76.75 ± 5.30
N-MNIST-3-U	48.11 ± 4.95	48.25 ± 6.01	94.02 ± 1.41	77.25 ± 7.71	92.50 ± 0.70
MINIIMAGENET-3-U	21.80 ± 3.78	22.41 ± 2.02	42.80 ± 1.11	40.78 ± 2.01	26.17 ± 0.78

Take-Home Messages 🕲

Thank You

❑ A Model Fusion Perspective for Meta Learning in Private Data Setting (a.k.a. where model fusion meets meta learning ☺)

