Eliminating the Invariance on the Loss Landscape of Linear Autoencoders

<u>Reza Oftadeh</u>, Jiayi Shen, Atlas Wang, Dylan Shell

Texas A&M University Department of Computer Sciense and Engineering

ICML 2020

► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:

- Loss surface has been analytically characterized.
- All local minima are global minima.
- The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).
- ▶ We present a new loss function for LAE:
 - Analytically characterize the loss landscape.
 - All local minima are global minima.
 - The columns of the optimal decoder span the *principal directions*.
 - Invariant local minima become saddle points.
 - Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).
- ▶ We present a new loss function for LAE:
 - Analytically characterize the loss landscape.
 - All local minima are global minima.
 - The columns of the optimal decoder span the *principal directions*.
 - Invariant local minima become saddle points.
 - Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).
- ▶ We present a new loss function for LAE:
 - Analytically characterize the loss landscape.
 - All local minima are global minima.
 - The columns of the optimal decoder span the *principal directions*.
 - Invariant local minima become saddle points.
 - Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).
- ▶ We present a new loss function for LAE:
 - Analytically characterize the loss landscape.
 - All local minima are global minima.
 - The columns of the optimal decoder span the *principal directions*.
 - Invariant local minima become saddle points.
 - Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).

- Analytically characterize the loss landscape.
- All local minima are global minima.
- The columns of the optimal decoder span the *principal directions*.
- Invariant local minima become saddle points.
- Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).

- Analytically characterize the loss landscape.
- All local minima are global minima.
- The columns of the optimal decoder span the *principal directions*.
- Invariant local minima become saddle points.
- Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).

- Analytically characterize the loss landscape.
- All local minima are global minima.
- The columns of the optimal decoder span the *principal directions*.
- Invariant local minima become saddle points.
- Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).

- Analytically characterize the loss landscape.
- All local minima are global minima.
- The columns of the optimal decoder span the *principal directions*.
- Invariant local minima become saddle points.
- Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).

- Analytically characterize the loss landscape.
- All local minima are global minima.
- The columns of the optimal decoder span the *principal directions*.
- Invariant local minima become saddle points.
- Computational complexity is of the same order of MSE loss.

- ► Linear Autoencoder (LAE) with Mean Square Error (MSE). The classical results:
 - Loss surface has been analytically characterized.
 - All local minima are global minima.
 - The columns of the optimal decoder does not identify the principal directions but only their low dimensional subspace (the so-called *invariance* problem).

- Analytically characterize the loss landscape.
- All local minima are global minima.
- The columns of the optimal decoder span the *principal directions*.
- Invariant local minima become saddle points.
- Computational complexity is of the same order of MSE loss.

• Data: m sample points of dimension n:

- Input: $\boldsymbol{x}_j \in \mathbb{R}^n$, Output: $\boldsymbol{y}_j \in \mathbb{R}^n$ for $j = 1, \dots, m$.
- In matrix form: $\boldsymbol{X} \in \mathbb{R}^{n \times m}, \, \boldsymbol{Y} \in \mathbb{R}^{n \times m}$
- ▶ LAE: A neural network with linear activation functions and single hidden layer of width p < n.

- The weights: The encoder matrix B, and the decoder matrix A.
- The global map is $\hat{y}_j = ABx_j$ or Y = ABX.

- Data: m sample points of dimension n:
 - Input: $\boldsymbol{x}_j \in \mathbb{R}^n$, Output: $\boldsymbol{y}_j \in \mathbb{R}^n$ for $j = 1, \dots, m$.
 - In matrix form: $X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^{n \times m}$
- ▶ LAE: A neural network with linear activation functions and single hidden layer of width p < n.

- The weights: The encoder matrix B, and the decoder matrix A.
- The global map is $\hat{y}_j = ABx_j$ or Y = ABX.

- Data: m sample points of dimension n:
 - Input: $\boldsymbol{x}_j \in \mathbb{R}^n$, Output: $\boldsymbol{y}_j \in \mathbb{R}^n$ for $j = 1, \dots, m$.
 - In matrix form: $X \in \mathbb{R}^{n \times m}$, $Y \in \mathbb{R}^{n \times m}$.
- ▶ LAE: A neural network with linear activation functions and single hidden layer of width p < n.

- The weights: The encoder matrix B, and the decoder matrix A.
- The global map is $\hat{y}_j = ABx_j$ or Y = ABX.

- Data: m sample points of dimension n:
 - Input: $\boldsymbol{x}_j \in \mathbb{R}^n$, Output: $\boldsymbol{y}_j \in \mathbb{R}^n$ for $j = 1, \dots, m$.
 - In matrix form: $X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^{n \times m}$.
- ▶ LAE: A neural network with linear activation functions and single hidden layer of width p < n.

- The weights: The encoder matrix B, and the decoder matrix A. - The global map is $\hat{y}_j = ABx_j$ or $\hat{Y} = ABX$.

- Data: m sample points of dimension n:
 - Input: $\boldsymbol{x}_j \in \mathbb{R}^n$, Output: $\boldsymbol{y}_j \in \mathbb{R}^n$ for $j = 1, \dots, m$.
 - In matrix form: $X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^{n \times m}$.
- ▶ LAE: A neural network with linear activation functions and single hidden layer of width p < n.

- The weights: The encoder matrix B, and the decoder matrix A. - The global map is $\hat{y}_j = ABx_j$ or $\hat{Y} = ABX$.

- Data: m sample points of dimension n:
 - Input: $\boldsymbol{x}_j \in \mathbb{R}^n$, Output: $\boldsymbol{y}_j \in \mathbb{R}^n$ for $j = 1, \dots, m$.
 - In matrix form: $X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^{n \times m}$.
- ▶ LAE: A neural network with linear activation functions and single hidden layer of width p < n.

- The weights: The encoder matrix B, and the decoder matrix A. - The global map is $\hat{y}_j = ABx_j$ or $\hat{Y} = ABX$.

• The MSE loss: $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$.

- If $(\mathbf{A}^*, \mathbf{B}^*)$ is a local minimum of \tilde{L} then for any invertible $\mathbf{C} \in \mathbb{R}^{p \times p}, (\mathbf{A}^*\mathbf{C}, \mathbf{C}^{-1}\mathbf{B}^*)$ is another local minima:

 $\tilde{L}(A^{*}C, C^{-1}B^{*}) = \left\| Y - A^{*}CC^{-1}B^{*}X \right\|_{F}^{2} = \tilde{L}(A^{*}, B^{*}).$

► The proposed loss: $L(A, B) \coloneqq \sum_{i=1}^{p} \|Y - AI_{i;p}BX\|_{F}^{2}$, where, $I_{i;p} = \operatorname{diag}(\underbrace{1, \cdots, 1}_{i}, 0, \cdots, 0) \in \mathbb{R}^{p \times p}$.

• The MSE loss: $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$.

- If $(\mathbf{A}^*, \mathbf{B}^*)$ is a local minimum of \tilde{L} then for any invertible $\mathbf{C} \in \mathbb{R}^{p \times p}$, $(\mathbf{A}^*\mathbf{C}, \mathbf{C}^{-1}\mathbf{B}^*)$ is another local minima:

$$\tilde{L}(A^{*}C, C^{-1}B^{*}) = \left\| Y - A^{*}CC^{-1}B^{*}X \right\|_{F}^{2} = \tilde{L}(A^{*}, B^{*}).$$

► The proposed loss: $L(A, B) \coloneqq \sum_{i=1}^{p} \|Y - AI_{i;p}BX\|_{F}^{2}$, where, $I_{i;p} = \operatorname{diag}(\underbrace{1, \cdots, 1}_{i}, 0, \cdots, 0) \in \mathbb{R}^{p \times p}$.

• The MSE loss: $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$.

- If $(\mathbf{A}^*, \mathbf{B}^*)$ is a local minimum of \tilde{L} then for any invertible $\mathbf{C} \in \mathbb{R}^{p \times p}, (\mathbf{A}^* \mathbf{C}, \mathbf{C}^{-1} \mathbf{B}^*)$ is another local minima:

 $ilde{L}(A^*C, C^{-1}B^*) = \left\| Y - A^*CC^{-1}B^*X \right\|_F^2 = ilde{L}(A^*, B^*).$

► The proposed loss: $L(A, B) \coloneqq \sum_{i=1}^{p} \|Y - AI_{i;p}BX\|_{F}^{2}$, where, $I_{i;p} = \text{diag}(\underbrace{1, \cdots, 1}_{i}, 0, \cdots, 0) \in \mathbb{R}^{p \times p}$.

A Visualization: MSE Loss

A Visualization: Proposed Loss

• The MSE loss: $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$.

- If $(\mathbf{A}^*, \mathbf{B}^*)$ is a local minimum of \tilde{L} then for any invertible $\mathbf{C} \in \mathbb{R}^{p \times p}, (\mathbf{A}^*\mathbf{C}, \mathbf{C}^{-1}\mathbf{B}^*)$ is another local minima:

 $\tilde{L}(A^{*}C, C^{-1}B^{*}) = \left\| Y - A^{*}CC^{-1}B^{*}X \right\|_{F}^{2} = \tilde{L}(A^{*}, B^{*}).$

- ► The proposed loss: $L(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \sum_{i=1}^{p} \|\boldsymbol{Y} \boldsymbol{A}\boldsymbol{I}_{i;p} \boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$, where, $\boldsymbol{I}_{i;p} = \operatorname{diag}(\underbrace{1, \cdots, 1}_{i}, 0, \cdots, 0) \in \mathbb{R}^{p \times p}$.
 - Intuition: (Sequential) As an example look at p = 3, where

$$\boldsymbol{I}_{1;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \boldsymbol{I}_{2;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \boldsymbol{I}_{3;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- But does this work simultaneously? And is it computationally feasible (p can be large)?
- Well, *it does and it is!* But before getting into details let's discuss some implications ...

• The MSE loss: $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$.

- If $(\mathbf{A}^*, \mathbf{B}^*)$ is a local minimum of \tilde{L} then for any invertible $\mathbf{C} \in \mathbb{R}^{p \times p}, (\mathbf{A}^*\mathbf{C}, \mathbf{C}^{-1}\mathbf{B}^*)$ is another local minima:

 $\tilde{L}(A^{*}C, C^{-1}B^{*}) = \left\| Y - A^{*}CC^{-1}B^{*}X \right\|_{F}^{2} = \tilde{L}(A^{*}, B^{*}).$

- ► The proposed loss: $L(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \sum_{i=1}^{p} \|\boldsymbol{Y} \boldsymbol{A}\boldsymbol{I}_{i;p} \boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$, where, $\boldsymbol{I}_{i;p} = \operatorname{diag}(\underbrace{1, \cdots, 1}_{i}, 0, \cdots, 0) \in \mathbb{R}^{p \times p}$.
 - Intuition: (Sequential) As an example look at p = 3, where

$$\boldsymbol{I}_{1;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \boldsymbol{I}_{2;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \boldsymbol{I}_{3;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- But does this work simultaneously? And is it computationally feasible (p can be large)?
- Well, it does and it is! But before getting into details let's discuss some implications ...

• The MSE loss: $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \|\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$.

- If $(\mathbf{A}^*, \mathbf{B}^*)$ is a local minimum of \tilde{L} then for any invertible $\mathbf{C} \in \mathbb{R}^{p \times p}$, $(\mathbf{A}^*\mathbf{C}, \mathbf{C}^{-1}\mathbf{B}^*)$ is another local minima:

 $\tilde{L}(A^{*}C, C^{-1}B^{*}) = \left\| Y - A^{*}CC^{-1}B^{*}X \right\|_{F}^{2} = \tilde{L}(A^{*}, B^{*}).$

- ► The proposed loss: $L(\boldsymbol{A}, \boldsymbol{B}) \coloneqq \sum_{i=1}^{p} \|\boldsymbol{Y} \boldsymbol{A}\boldsymbol{I}_{i;p} \boldsymbol{B}\boldsymbol{X}\|_{F}^{2}$, where, $\boldsymbol{I}_{i;p} = \operatorname{diag}(\underbrace{1, \cdots, 1}_{i}, 0, \cdots, 0) \in \mathbb{R}^{p \times p}$.
 - Intuition: (Sequential) As an example look at p = 3, where

$$\boldsymbol{I}_{1;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \boldsymbol{I}_{2;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \boldsymbol{I}_{3;3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- But does this work simultaneously? And is it computationally feasible (p can be large)?
- Well, it does and it is! But before getting into details let's discuss some implications ...

Implications

- ▶ Let (A^*, B^*) be the local minimum of MSE loss, where the columns of A^* are the largest eigenvectors of the sample covariance matrix, then for any invertible $C \in \mathbb{R}^{p \times p}$, $(A^*C, C^{-1}B^*)$ is another local minima.
 - Numerically, on the same dataset different runs with different initializations lead to different optimal points.
 - Almost surely none will represent the principal directions.
- ► The only local minimum of the loss L is (A^{*}, B^{*}), up to the normalization of the columns.
 - The loss L enables low rank decomposition as a single optimization block that can be incorporated as part of a larger pipeline.
 - Potentially enabling LAEs to compete with other approaches for low rank decomposition.

► The critical point equations of \tilde{L} and L. For $\tilde{L}(\boldsymbol{A}, \boldsymbol{B})$: For $L(\boldsymbol{A}, \boldsymbol{B})$: $\boldsymbol{A}' \boldsymbol{A} \boldsymbol{B} \boldsymbol{\Sigma}_{xx} = \boldsymbol{A}' \boldsymbol{\Sigma}_{yx},$ $\boldsymbol{A} \boldsymbol{B} \boldsymbol{\Sigma}_{xx} \boldsymbol{B}' = \boldsymbol{\Sigma}_{yx} \boldsymbol{B}',$ $\boldsymbol{A} (\boldsymbol{S}_p \circ (\boldsymbol{A}' \boldsymbol{A})) \boldsymbol{B} \boldsymbol{\Sigma}_{xx} = \boldsymbol{T}_p \boldsymbol{A}' \boldsymbol{\Sigma}_{yx},$ $\boldsymbol{A} (\boldsymbol{S}_p \circ (\boldsymbol{B} \boldsymbol{\Sigma}_{xx} \boldsymbol{B}')) = \boldsymbol{\Sigma}_{yx} \boldsymbol{B}' \boldsymbol{T}_p,$ where,

-A' is the transpose of A.

- $\Sigma_{xx} = XX', \ \Sigma_{yx} = YX'$ are covariance matrices.
- \circ is the (element-wise) Hadamard product, and
- T_p , and S_p are

$$\begin{split} \boldsymbol{T}_p &= \operatorname{diag}\left(p, p-1, \cdots, 1\right), \\ \boldsymbol{S}_p &= \begin{bmatrix} p & p-1 & \cdots & 1 \\ p-1 & p-1 & \cdots & 1 \\ \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \text{ e.g. } \boldsymbol{S}_4 = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}. \end{split}$$

► The critical point equations of \tilde{L} and L. For $\tilde{L}(\boldsymbol{A}, \boldsymbol{B})$: For $L(\boldsymbol{A}, \boldsymbol{B})$: $\boldsymbol{A}'\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx} = \boldsymbol{A}'\boldsymbol{\Sigma}_{yx},$ $\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx}\boldsymbol{B}' = \boldsymbol{\Sigma}_{yx}\boldsymbol{B}',$ $\boldsymbol{A}(\boldsymbol{S}_p \circ (\boldsymbol{B}\boldsymbol{\Sigma}_{xx}\boldsymbol{B}')) = \boldsymbol{\Sigma}_{yx}\boldsymbol{B}'\boldsymbol{T}_p,$ where,

- \mathbf{A}' is the transpose of \mathbf{A} .
- $\Sigma_{xx} = XX', \ \Sigma_{yx} = YX'$ are covariance matrices.
- \circ is the (element-wise) Hadamard product, and
- T_p , and S_p are

$$\begin{aligned} \boldsymbol{T}_p &= \operatorname{diag}\left(p, p-1, \cdots, 1\right), \\ \boldsymbol{S}_p &= \begin{bmatrix} p & p-1 & \cdots & 1 \\ p-1 & p-1 & \cdots & 1 \\ \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \text{ e.g. } \boldsymbol{S}_4 = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}. \end{aligned}$$

► The critical point equations of \tilde{L} and L. For $\tilde{L}(A, B)$: For L(A, B): $A'AB\Sigma_{xx} = A'\Sigma_{yx},$ $AB\Sigma_{xx}B' = \Sigma_{yx}B',$ $A(S_p \circ (B\Sigma_{xx}B')) = \Sigma_{yx}B'T_p,$ where

where,

- A' is the transpose of A.
- $\Sigma_{xx} = XX', \ \Sigma_{yx} = YX'$ are covariance matrices.

 $- \circ$ is the (element-wise) Hadamard product, and

- T_p , and S_p are

$$\begin{split} \boldsymbol{T}_p &= \text{diag}\left(p, p-1, \cdots, 1\right), \\ \boldsymbol{S}_p &= \begin{bmatrix} p & p-1 & \cdots & 1 \\ p-1 & p-1 & \cdots & 1 \\ \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \text{ e.g. } \boldsymbol{S}_4 = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}. \end{split}$$

where,

- \mathbf{A}' is the transpose of \mathbf{A} .
- $\Sigma_{xx} = XX', \ \Sigma_{yx} = YX'$ are covariance matrices.
- $-\circ$ is the (element-wise) Hadamard product, and

- $\boldsymbol{T}_p,$ and \boldsymbol{S}_p are

$$\begin{split} \boldsymbol{T}_p &= \text{diag}\left(p, p-1, \cdots, 1\right), \\ \boldsymbol{S}_p &= \begin{bmatrix} p & p-1 & \cdots & 1 \\ p-1 & p-1 & \cdots & 1 \\ \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \text{ e.g. } \boldsymbol{S}_4 = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}. \end{split}$$

where,

- \mathbf{A}' is the transpose of \mathbf{A} .
- $\Sigma_{xx} = XX', \ \Sigma_{yx} = YX'$ are covariance matrices.
- \circ is the (element-wise) Hadamard product, and
- \mathbf{T}_p , and \mathbf{S}_p are

$$\begin{aligned} \boldsymbol{T}_p &= \text{diag}\left(p, p-1, \cdots, 1\right), \\ \boldsymbol{S}_p &= \begin{bmatrix} p & p-1 & \cdots & 1 \\ p-1 & p-1 & \cdots & 1 \\ \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \text{ e.g. } \boldsymbol{S}_4 = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}. \end{aligned}$$

Every critical point of L(A, B) is a critical point of $\tilde{L}(A, B)$, but not the other way around.

▶ Local minima of L, and \tilde{L} :

 $\begin{array}{c|c} \operatorname{For} \ \tilde{L}(\boldsymbol{A},\boldsymbol{B}) \colon & \operatorname{For} \ L(\boldsymbol{A},\boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = \ \boldsymbol{U}_{1:p} \boldsymbol{C}_{p}, \\ \boldsymbol{B}^{*} = \ \boldsymbol{C}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array} \begin{array}{c} \operatorname{For} \ \boldsymbol{L}(\boldsymbol{A},\boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = \ \boldsymbol{U}_{1:p} \boldsymbol{D}_{p}, \\ \boldsymbol{B}^{*} = \ \boldsymbol{D}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array}$

- The i^{th} column of $U_{1:p}$ is a unit eigenvector of $\Sigma \coloneqq \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$ corresponding the i^{th} largest eigenvalue.
- D_p is a diagonal matrix with nonzero diagonal elements, and $C_p \in \operatorname{GL}_p(\mathbb{R})$.

▶ The characterization of the loss landscape:

- The structure of full rank saddle points.
- The structure of low rank saddle points (rather involved!).

- Every critical point of L(A, B) is a critical point of $\tilde{L}(A, B)$, but not the other way around.
- ▶ Local minima of L, and \tilde{L} :

 $\begin{array}{c|c} \operatorname{For} \tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \colon & \operatorname{For} L(\boldsymbol{A}, \boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = & \boldsymbol{U}_{1:p} \boldsymbol{C}_{p}, \\ \boldsymbol{B}^{*} = & \boldsymbol{C}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array} \begin{array}{c|c} \operatorname{For} L(\boldsymbol{A}, \boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = & \boldsymbol{U}_{1:p} \boldsymbol{D}_{p}, \\ \boldsymbol{B}^{*} = & \boldsymbol{D}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array}$

- The *i*th column of $U_{1:p}$ is a unit eigenvector of $\Sigma := \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$ corresponding the *i*th largest eigenvalue. - D_p is a diagonal matrix with nonzero diagonal elements,
- and $C_p \in \mathrm{GL}_p(\mathbb{R}).$
- ▶ The characterization of the loss landscape:
 - The structure of full rank saddle points.
 - The structure of low rank saddle points (rather involved!).

- Every critical point of L(A, B) is a critical point of $\tilde{L}(A, B)$, but not the other way around.
- ▶ Local minima of L, and \tilde{L} :

 $\begin{array}{c|c} \operatorname{For} \tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \colon & \operatorname{For} L(\boldsymbol{A}, \boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = & \boldsymbol{U}_{1:p} \boldsymbol{C}_{p}, \\ \boldsymbol{B}^{*} = & \boldsymbol{C}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array} \begin{array}{c|c} \operatorname{For} L(\boldsymbol{A}, \boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = & \boldsymbol{U}_{1:p} \boldsymbol{D}_{p}, \\ \boldsymbol{B}^{*} = & \boldsymbol{D}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array}$

- The *i*th column of $U_{1:p}$ is a unit eigenvector of $\Sigma := \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$ corresponding the *i*th largest eigenvalue. - D_p is a diagonal matrix with nonzero diagonal elements, and $C \in CL_{\infty}(\mathbb{R})$
- ▶ The characterization of the loss landscape:
 - The structure of full rank saddle points.
 - The structure of low rank saddle points (rather involved!).

- Every critical point of L(A, B) is a critical point of $\tilde{L}(A, B)$, but not the other way around.
- ▶ Local minima of L, and \tilde{L} :

 $\begin{array}{c|c} \operatorname{For} \tilde{L}(\boldsymbol{A}, \boldsymbol{B}) \colon & \operatorname{For} L(\boldsymbol{A}, \boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = & \boldsymbol{U}_{1:p} \boldsymbol{C}_{p}, \\ \boldsymbol{B}^{*} = & \boldsymbol{C}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array} \begin{array}{c|c} \operatorname{For} L(\boldsymbol{A}, \boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = & \boldsymbol{U}_{1:p} \boldsymbol{D}_{p}, \\ \boldsymbol{B}^{*} = & \boldsymbol{D}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array}$

- The *i*th column of $U_{1:p}$ is a unit eigenvector of $\Sigma := \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$ corresponding the *i*th largest eigenvalue. - D_p is a diagonal matrix with nonzero diagonal elements, and $C_p \in \operatorname{GL}_p(\mathbb{R})$.
- ▶ The characterization of the loss landscape:
 - The structure of full rank saddle points.
 - The structure of low rank saddle points (rather involved!).

- Every critical point of L(A, B) is a critical point of $\tilde{L}(A, B)$, but not the other way around.
- ▶ Local minima of L, and \tilde{L} :

$$\begin{array}{c|c} \operatorname{For} \ \tilde{L}(\boldsymbol{A},\boldsymbol{B}) \colon & \operatorname{For} \ L(\boldsymbol{A},\boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = \ \boldsymbol{U}_{1:p} \boldsymbol{C}_{p}, \\ \boldsymbol{B}^{*} = \ \boldsymbol{C}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array} \begin{array}{c} \operatorname{For} \ \boldsymbol{L}(\boldsymbol{A},\boldsymbol{B}) \colon \\ \boldsymbol{A}^{*} = \ \boldsymbol{U}_{1:p} \boldsymbol{D}_{p}, \\ \boldsymbol{B}^{*} = \ \boldsymbol{D}_{p}^{-1} \boldsymbol{U}_{1:p}^{\prime} \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1}, \end{array}$$

- The *i*th column of $U_{1:p}$ is a unit eigenvector of $\Sigma := \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$ corresponding the *i*th largest eigenvalue. - D_p is a diagonal matrix with nonzero diagonal elements, and $C_p \in \operatorname{GL}_p(\mathbb{R})$.
- ▶ The characterization of the loss landscape:
 - The structure of full rank saddle points.
 - The structure of low rank saddle points (rather involved!).

► The MSE loss \tilde{L} and our loss L can be written as $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) = p \operatorname{Tr}(\boldsymbol{\Sigma}_{yy}) - 2 \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xy}) + \operatorname{Tr}(\boldsymbol{B}'\boldsymbol{A}'\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx}),$ $L(\boldsymbol{A}, \boldsymbol{B}) = p \operatorname{Tr}(\boldsymbol{\Sigma}_{yy}) - 2 \operatorname{Tr}(\boldsymbol{A}\boldsymbol{T}_p \boldsymbol{B}\boldsymbol{\Sigma}_{xy})$ $+ \operatorname{Tr}(\boldsymbol{B}'(\boldsymbol{S}_p \circ (\boldsymbol{A}'\boldsymbol{A})) \boldsymbol{B}\boldsymbol{\Sigma}_{xx}).$

▶ The analytical gradients are:

 $egin{aligned} &d_{m{B}} ilde{L}(m{A},m{B})m{W} = -2\langlem{A}'m{\Sigma}_{yx}-m{A}'m{A}m{B}m{\Sigma}_{xx},m{W}
angle_F,\ &d_{m{B}}L(m{A},m{B})m{W} = -2\langlem{T}_pm{A}'m{\Sigma}_{yx}-ig(m{S}_p\circig(m{A}'m{A}ig)ig)m{B}m{\Sigma}_{xx},m{W}
angle_F, \end{aligned}$

in direction of $\boldsymbol{W} \in \mathbb{R}^{p \times n}$. The gradient for \boldsymbol{A} is similar.

Finally, since the loss function is explicitly provided, any optimization method that works with MSE loss is usable with the proposed loss.

► The MSE loss \tilde{L} and our loss L can be written as $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) = p \operatorname{Tr}(\boldsymbol{\Sigma}_{yy}) - 2 \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xy}) + \operatorname{Tr}(\boldsymbol{B}'\boldsymbol{A}'\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx}),$ $L(\boldsymbol{A}, \boldsymbol{B}) = p \operatorname{Tr}(\boldsymbol{\Sigma}_{yy}) - 2 \operatorname{Tr}(\boldsymbol{A}\boldsymbol{T}_{p}\boldsymbol{B}\boldsymbol{\Sigma}_{xy})$

 $+\operatorname{Tr}\left(oldsymbol{B}'\left(oldsymbol{S}_p\circ\left(oldsymbol{A}'oldsymbol{A}
ight)
ight)oldsymbol{B}\Sigma_{xx}
ight).$

► The analytical gradients are:

 $d_{\boldsymbol{B}}\tilde{L}(\boldsymbol{A},\boldsymbol{B})\boldsymbol{W} = -2\langle \boldsymbol{A}'\boldsymbol{\Sigma}_{yx} - \boldsymbol{A}'\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx},\boldsymbol{W}\rangle_{F},\\ d_{\boldsymbol{B}}L(\boldsymbol{A},\boldsymbol{B})\boldsymbol{W} = -2\langle T_{p}\boldsymbol{A}'\boldsymbol{\Sigma}_{yx} - \left(\boldsymbol{S}_{p}\circ\left(\boldsymbol{A}'\boldsymbol{A}\right)\right)\boldsymbol{B}\boldsymbol{\Sigma}_{xx},\boldsymbol{W}\rangle_{F},$

in direction of $\boldsymbol{W} \in \mathbb{R}^{p \times n}$. The gradient for \boldsymbol{A} is similar.

Finally, since the loss function is explicitly provided, any optimization method that works with MSE loss is usable with the proposed loss.

► The MSE loss \tilde{L} and our loss L can be written as $\tilde{L}(\boldsymbol{A}, \boldsymbol{B}) = p \operatorname{Tr}(\boldsymbol{\Sigma}_{yy}) - 2 \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xy}) + \operatorname{Tr}(\boldsymbol{B}'\boldsymbol{A}'\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx}),$ $L(\boldsymbol{A}, \boldsymbol{B}) = p \operatorname{Tr}(\boldsymbol{\Sigma}_{yy}) - 2 \operatorname{Tr}(\boldsymbol{A}\boldsymbol{T}_{p}\boldsymbol{B}\boldsymbol{\Sigma}_{xy})$

 $+\operatorname{Tr}\left(oldsymbol{B}'\left(oldsymbol{S}_{p}\circ\left(oldsymbol{A}'oldsymbol{A}
ight)
ight)oldsymbol{B}oldsymbol{\Sigma}_{xx}
ight).$

► The analytical gradients are:

 $d_{B}\tilde{L}(\boldsymbol{A},\boldsymbol{B})\boldsymbol{W} = -2\langle \boldsymbol{A}'\boldsymbol{\Sigma}_{yx} - \boldsymbol{A}'\boldsymbol{A}\boldsymbol{B}\boldsymbol{\Sigma}_{xx}, \boldsymbol{W}\rangle_{F}, \\ d_{B}L(\boldsymbol{A},\boldsymbol{B})\boldsymbol{W} = -2\langle \boldsymbol{T}_{p}\boldsymbol{A}'\boldsymbol{\Sigma}_{yx} - \left(\boldsymbol{S}_{p}\circ\left(\boldsymbol{A}'\boldsymbol{A}\right)\right)\boldsymbol{B}\boldsymbol{\Sigma}_{xx}, \boldsymbol{W}\rangle_{F},$

in direction of $\boldsymbol{W} \in \mathbb{R}^{p \times n}$. The gradient for \boldsymbol{A} is similar.

Finally, since the loss function is explicitly provided, any optimization method that works with MSE loss is usable with the proposed loss.