

Global Decision-Making via Local Economic Transactions

Michael Chang Sid Kaushik Matt Weinberg Tom Griffiths Sergey Levine

Much Success So Far

se from Department officials.

Game Playing Silver et al. (2016) Natural Language Processing Radford et al. (2019)

Robotics Levine et al. (2016)

Computer Vision He et al. (2017)

Game Playing

Silver et al. (2016)

Is working with the Federal Railroad Administration to find the thief. "The theff of this nuclear material will have significant negative consequences on public and movimental health, our workforce and the consequences on public and movimental health, our workforce and the soutcoment. "Our top priority is to secure the theft and ensure it doesn't happen again." The stolem material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials. Natural Language Proceessing

Radford et al. (2019)

Cincinnati today. Its whereabouts are unknown The incident occurred on the downtown train Covington and Ashland stations.

Robotics Levine et al. (2016)

Computer Vision He et al. (2017)

Game Playing Silver et al. (2016)

Natural Language Processing Radford et al. (2019)

A train carriage containing controlled nuclear materials was stoler. Cincinnati todav. Its whereabouts are unknown.

orking with the Federal Railroad Administration to find the thief

The theft of this nuclear material will have significant negative soncequences on public and environmental health our workforce and th commy of our nation," said Ton Hicks, the U.S. Energy Secretary, in takeenet. "Our top priority is to secure the theft and ensure it essn't happen again." he stolen material was taken from the University of Cincinnati's essnch friamle Park nuclear research site, according to a meus

Robotics Levine et al. (2016)

Computer Vision He et al. (2017) One optimization problem

Game Playing Silver et al. (2016)

The stolen material was taken from the University of Cincinnal's Present in the University of Cincinnal's release from Department officials. Natural Language Processing Radford et al. (2019)

A train carriage containing controlled nuclear materials was stoler Cincinnati today. Its whereabouts are unknown.

orking with the Federal Railroad Administration to find the thief

The theft of this nuclear material will have significant negative onsequences on public and environmental health, our workforce and th conomy of our nation," said Tom Hicks, the U.S. Energy Secretary, in tatement. "Our too priority is to secure the theft and ensure it

Robotics Levine et al. (2016) Computer Vision He et al. (2017) *One* optimization problem *One* agent

Game Playing Silver et al. (2016)

A train carriage containing controlled nuclear materials was stoler

Robotics Levine et al. (2016) Computer Vision He et al. (2017) *One* optimization problem *One* agent *One* objective

Corporation

One optimization problem *One* agent *One* objective

Corporation

Local Agent	Local Agent	Local Agent	Environment

Many optimization problems Many agents Many objectives

Many *local* optimization problems Many *local* agents Many *local* objectives

Emergent *global* optimization problem Emergent *global* agent Emergent *global* objective

Biological Processes

Ecosystems

Society					
Agent	Agent	Agent			

Environment

Economies

Organizations

Challenge

How can we build machine learning algorithms that relate the global level of the society and the local level of the agent?

Challenge

How can we build machine learning algorithms that relate the global level of the society and the local level of the agent?

Implications

• Enable the design of learning algorithms that are inherently modular

Challenge

How can we build machine learning algorithms that relate the global level of the society and the local level of the agent?

Implications

- Enable the design of learning algorithms that are inherently modular
- Provide a recipe for engineering and analyzing a multi-agent system to achieve a desired global outcome

Challenge

How can we build machine learning algorithms that relate the global level of the society and the local level of the agent?

Implications

- Enable the design of learning algorithms that are inherently modular
- Provide a recipe for engineering and analyzing a multi-agent system to achieve a desired global outcome

This Paper

Assumptions

• Sequential decision-making setting

Assumptions

- Sequential decision making setting
- Each agent produces a specialized transformation to the state (e.g. a literal action)

Assumptions

- Sequential decision making setting
- Each agent produces a specialized transformation to the state (e.g. a literal action)
- Only one agent activates at each time step

Intuition

This Paper: Contributions

Assumptions

- Sequential decision making setting
- Each agent produces a specialized transformation to the state (e.g. a literal action)
- Only one agent activates at each time step

Main Contribution

We show that the Vickrey Auction can be adapted to MDPs such that the solution of the global societal objective emerges as a Nash equilibrium strategy profile of the local agents

This Paper: Contributions

Assumptions

- Sequential decision making setting
- Each agent produces a specialized transformation to the state (e.g. a literal action)
- Only one agent activates at each time step

Main Contribution

We show that the Vickrey Auction can be adapted to MDPs such that the solution of the global societal objective emerges as a Nash equilibrium strategy profile of the local agents

Implication: Bridging Two Levels of Abstraction

• A recipe for translating a global objective of a society into local learning problems for the agents

This Paper: Contributions

Assumptions

- Sequential decision making setting
- Each agent produces a specialized transformation to the state (e.g. a literal action)
- Only one agent activates at each time step

Main Contribution

We show that the Vickrey Auction can be adapted to MDPs such that the solution of the global societal objective emerges as a Nash equilibrium strategy profile of the local agents

Implication: Bridging Two Levels of Abstraction

- A recipe for translating a global objective of a society into local learning problems for the agents
- A decentralized reinforcement learning algorithm with credit assignment local in space and time

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP to emerge?

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP to emerge?

For what auction mechanism would these optimal bids be an equilibrium strategy?

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP to emerge?

For what auction mechanism would these optimal bids be an equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP to emerge?

For what auction mechanism would these optimal bids be an equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP to emerge?

For what auction mechanism would these optimal bids be an equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP to emerge?

For what auction mechanism would these optimal bids be an equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

Architecture of an Agent

Activating Agents via Auction

Transforming the State

What should the optimal bids be?

Key Idea: the optimal bid is your optimal Q value

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	
How can we adapt this auction mechanism for discrete-action MDPs?	
How can we avoid suboptimal equilibria?	
How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?	

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	
How can we adapt this auction mechanism for discrete-action MDPs?	
How can we avoid suboptimal equilibria?	
How can we translate the auction mechanism into a decentralized	

reinforcement learning algorithm?

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question What should the agents' utilities be?

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question What should the agents' utilities be?

Utilities? Losers: $u^i(b) = 0$

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question What should the agents' utilities be?

Utilities? Losers: $u^i(b) = 0$ Winner: $u^i(b) = v^i - ?$

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question

What should the agents' utilities be?

First Price Sealed-Bid Auction Utilities? Losers: $u^i(b) = 0$ Winner: $u^i(b) = v^i - b$

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question

What should the agents' utilities be?

First Price Sealed-Bid Auction Utilities? Losers: $u^i(b) = 0$ Winner: $u^i(b) = v^i - b$

Problem with First Price Sealed-Bid Auctions There is no dominant strategy – the bid that optimizes an agent's utility depends on what other agents bid

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question What should the agents' utilities be?

Utilities? Losers: $u^i(b) = 0$ Winner: $u^i(b) = v^i - ?$

Want: Dominant Strategy Incentive Compatibility The optimal strategy is to truthfully bid its own valuation:

 $b^i \leftarrow v^i$

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question What should the agents' utilities be?

Utilities? Losers: $u^i(b) = 0$ Winner: $u^i(b) = v^i - ?$

Want: Dominant Strategy Incentive Compatibility The optimal strategy is to truthfully bid its own valuation:

 $b^i \leftarrow v^i$

Implication: Set
$$v^k(s_t) = Q^*(s_t, \omega^k)!$$

Vickrey Auction

Assume

Each agent ω^k has a valuation $v^k(s_t)$ for state s_t

Question

What should the agents' utilities be?

Vickrey Auction Utilities! Losers: $u^i(b) = 0$ Winner: $u^i(b) = v^i - \max_{j \neq i} b^j$

Want: Dominant Strategy Incentive Compatibility The optimal strategy is to truthfully bid its own valuation:

 $b^i \leftarrow v^i$

Implication: Set
$$v^k(s_t) = Q^*(s_t, \omega^k)!$$

A Recipe for Relating Local and Global Objectives

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

But wait...

Optimal Q values are usually unknown!

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	
How can we avoid suboptimal equilibria?	

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

Bidders

72

Roadmap

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
How can we avoid subantimal aquilibria?	

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

Proposition: If the utilities are defined as below, it is a Nash equilibrium for every primitive to bid their optimal Q value in the Global MDP.

Valuations

Utilities

Before:

$$v^i(s_t) = Q^*(s_t, \omega_t^i)$$

Winners:

$$u^{i}(b) = \left[r\left(s_{t}, \omega_{t}^{i}\right) + \gamma \max_{k} b_{t+1}^{k}\right] - \max_{j \neq i} b^{j}$$

Now:

$$v^{i}(s_{t}) = r(s_{t}, \omega_{t}^{i}) + \gamma \max_{k} b_{t+1}^{k}$$

Losers:

 $u^i(b)=0$

But wait...

Utility is not conserved!

Roadmap

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
How can we avoid suboptimal equilibria?	

now can we avoid supoplimal equilibria?

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

87

Main Result: Cloned Vickrey Society

Winners:

$$u^{i}(b) = \left[r\left(s_{t}, \omega_{t}^{i}\right) + \gamma \max_{k} b_{t+1}^{k}\right] - \max_{j \neq i} b^{j}$$

Losers:

 $u^i(b) = 0$

Theorem: In a Cloned Vickrey Society, it is a Nash equilibrium for every primitive to bid their optimal Q value in the Global MDP and utility is conserved.

Winners:

$$u^{i}(b) = \left[r\left(s_{t}, \omega_{t}^{i}\right) + \gamma \max_{k} b_{t+1}^{k}\right] - \max_{j \neq i} b^{j}$$

Utilities

Losers:

 $u^i(b) = 0$

Roadmap

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
How can we avoid suboptimal equilibria?	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.

How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?

From Equilibria to Learning Objectives

Each agent learns a bidding policy by optimizes their utility as reward:

Winners:

Losers:

 $u^{i}(b) = \left[r\left(s_{t}, \omega_{t}^{i}\right) + \gamma \max_{k} b_{t+1}^{k}\right] - \max_{j \neq i} b^{j} \qquad \qquad u^{i}(b) = 0$

Train bidding policies using standard reinforcement learning algorithms

Decentralized Reinforcement Learning

Each agent learns a bidding policy by optimizes their utility as reward:

Winners: Losers:

$$u^{i}(b) = \left[r\left(s_{t}, \omega_{t}^{i}\right) + \gamma \max_{k} b_{t+1}^{k}\right] - \max_{j \neq i} b^{j} \qquad \qquad u^{i}(b) = 0$$

Train bidding policies using standard reinforcement learning algorithms

Society: an emergent solution that is **global** in space and time Agent: learns via credit assignment **local** in space and time

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
How can we avoid suboptimal equilibria?	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.
How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?	Define the auction utility as the agents' reinforcement learning objective, yielding a decentralized reinforcement learning algorithm for the Global MDP.

Assumptions	Key Idea
Assume the agents ω^i know their valuations as $\nu^i(s_t) = Q^*(s_t, \omega_t^i)$	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
Dominant strategy equilibrium in auction = solution to Global MDP Pro: provable dominant strategy equilibrium Con: assumes optimal Q-values are known	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.
	Define the auction utility as the agents' reinforcement learning objective, yielding a decentralized reinforcement learning algorithm for the Global MDP.

Assumptions	Key Idea
Assume the agents ω^i know their valuations as $\nu^i(s_t) = Q^*(s_t, \omega_t^i)$	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
Dominant strategy equilibrium in auction = solution to Global MDP Pro: provable dominant strategy equilibrium Con: assumes optimal Q-values are known	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
Assume the agents ω^i know their valuations as $v^i(s_t) = r(s_t, \omega_t^i) + \gamma \max_k b_{t+1}^k$	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
Nash equilibrium in auction = solution to Global MDP Pro: does not assume optimal Q-value is known Con: assumes valuations are known	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.
	Define the auction utility as the agents' reinforcement learning objective, yielding a decentralized reinforcement learning algorithm for the Global MDP.

Assumptions	Key Idea
Assume the agents ω^i know their valuations as $v^i(s_t) = Q^*(s_t, \omega_t^i)$	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
Dominant strategy equilibrium in auction = solution to Global MDP Pro: provable dominant strategy equilibrium Con: assumes optimal Q-values are known	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
Assume the agents ω^i know their valuations as $v^i(s_t) = r(s_t, \omega_t^i) + \gamma \max_k b_{t+1}^k$	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
Nash equilibrium in auction = solution to Global MDP Pro: does not assume optimal Q-value is known Con: assumes valuations are known	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.
Assume the agents ω^i learn their valuations through interaction. Nash equilibrium in auction = solution to Global MDP Pro: does not assume valuations are known Con: difficult to prove convergence to equilibrium	Define the auction utility as the agents' reinforcement learning objective, yielding a decentralized reinforcement learning algorithm for the Global MDP.

Numerical Simulations

- 1. How closely do the bids the agents learn match their optimal Q-values?
- 2. Does the solution to the global objective emerge from the competition among the agents?
- 3. How does redundancy affect the solutions the agents converge to?
- 4. Does the modularity of such a decentralized system offer benefit in transferring to new tasks?

Reward $r(\omega^i)$

Does the solution to the global objective emerge from the competition among the agents?

Does the solution to the global objective emerge from the competition among the agents?

Does the solution to the global objective emerge from the competition among the agents?

Does the solution to the global objective emerge from the competition among the agents?

Global Objective for the Society Maximize return

Local Objectives for the Agents Maximize utility in the auction

How closely do the bids the agents learn match their optimal Q-values?

Cloned Vickrey Auction

Transfer

Pre-training Task

Transfer Task

Transfer

Optimal Policy for the Society

Pre-training Task

Transfer Task

Transfer

Contributions

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
How can we avoid suboptimal equilibria?	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.
How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?	Define the auction utility as the agents' reinforcement learning objective, yielding a decentralized reinforcement learning algorithm for the Global MDP.

https://sites.google.com/view/clonedvickreysociety

Contributions

Cloned Vickrey Society

A society of agents that implements global decision making via local economic transactions.

Question	Key Idea
What should the optimal bids be for the solution of the Global MDP to emerge?	Define the optimal bid as the optimal Q value $Q^*(s_t, \omega^i)$ for activating agent ω^i at state s_t .
For what auction mechanism would these optimal bids be an equilibrium strategy?	By defining the agents' valuations $v^i(s)$ as $Q^*(s, \omega^i)$, under the Vickrey auction it is a dominant strategy to truthfully bid $Q^*(s, \omega^i)$.
How can we adapt this auction mechanism for discrete-action MDPs?	Temporally couple the agents in a market : An agent's valuation of s_t is defined by how much it can sell the product s_{t+1} of executing its transformation on s_t .
How can we avoid suboptimal equilibria?	Redundancy enforces credit conservation that helps avoid suboptimal equilibria.
How can we translate the auction mechanism into a decentralized reinforcement learning algorithm?	Define the auction utility as the agents' reinforcement learning objective, yielding a decentralized reinforcement learning algorithm for the Global MDP.

https://sites.google.com/view/clonedvickreysociety