p-Norm Flow Diffusion for Local Graph Clustering

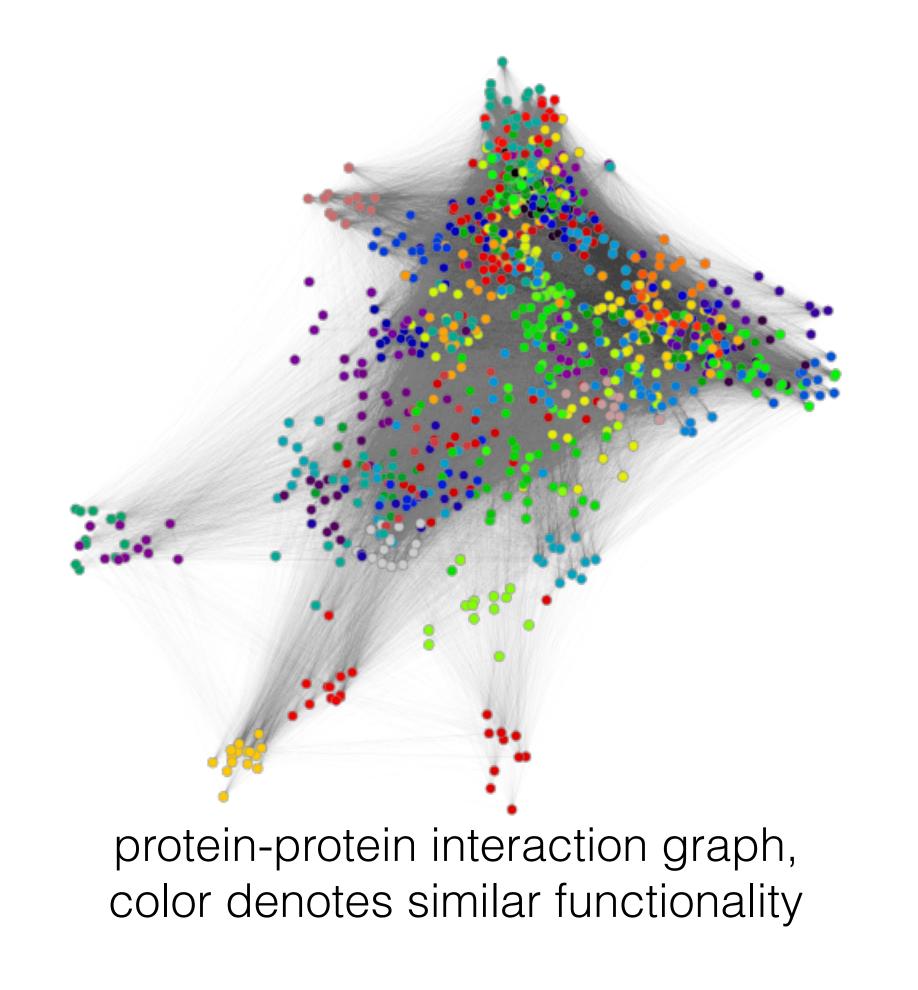
Kimon Fountoulakis¹, Di Wang², Shenghao Yang¹

¹University of Waterloo ²Google Research

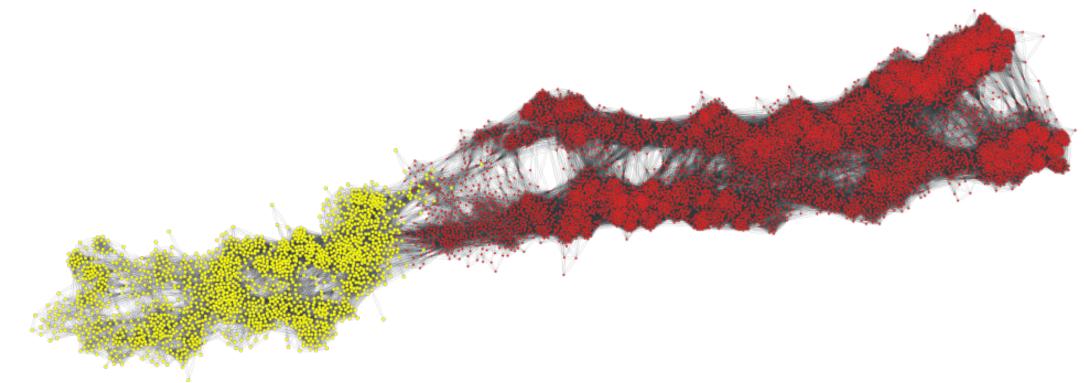
ICML 2020

Motivation: detection of small clusters in large and noisy graphs

- -Real large-scale graphs have rich local structure
- -We often have to detect small clusters in large graphs:



Rather than partitioning graphs with nice structure



US-Senate graph, nice bi-partition in year 1865 around the end of the American civil war

Detection of small clusters in large graphs call for new methods that

- -run in time proportional to the size of the output (but not the whole graph),
- -supported by good theoretical guarantees,
- -require few tuning parameters.

(Approximate Personalized) PageRank?

-run in time proportional to the size of the output (but not the whole graph), $\sqrt{}$

-supported by good theoretical guarantees, X

-require few tuning parameters.

Graph cut or max-flow approach?

-run in time proportional to the size of the output (but not the whole graph),

-supported by good theoretical guarantees,

This work Let's replace PageRank with an even simpler model

-run in time proportional to the size of the output (but not the whole graph), $\sqrt{}$

-require few tuning parameters.

Existing local graph clustering methods

Spectral diffusions Combinatorial diffusions

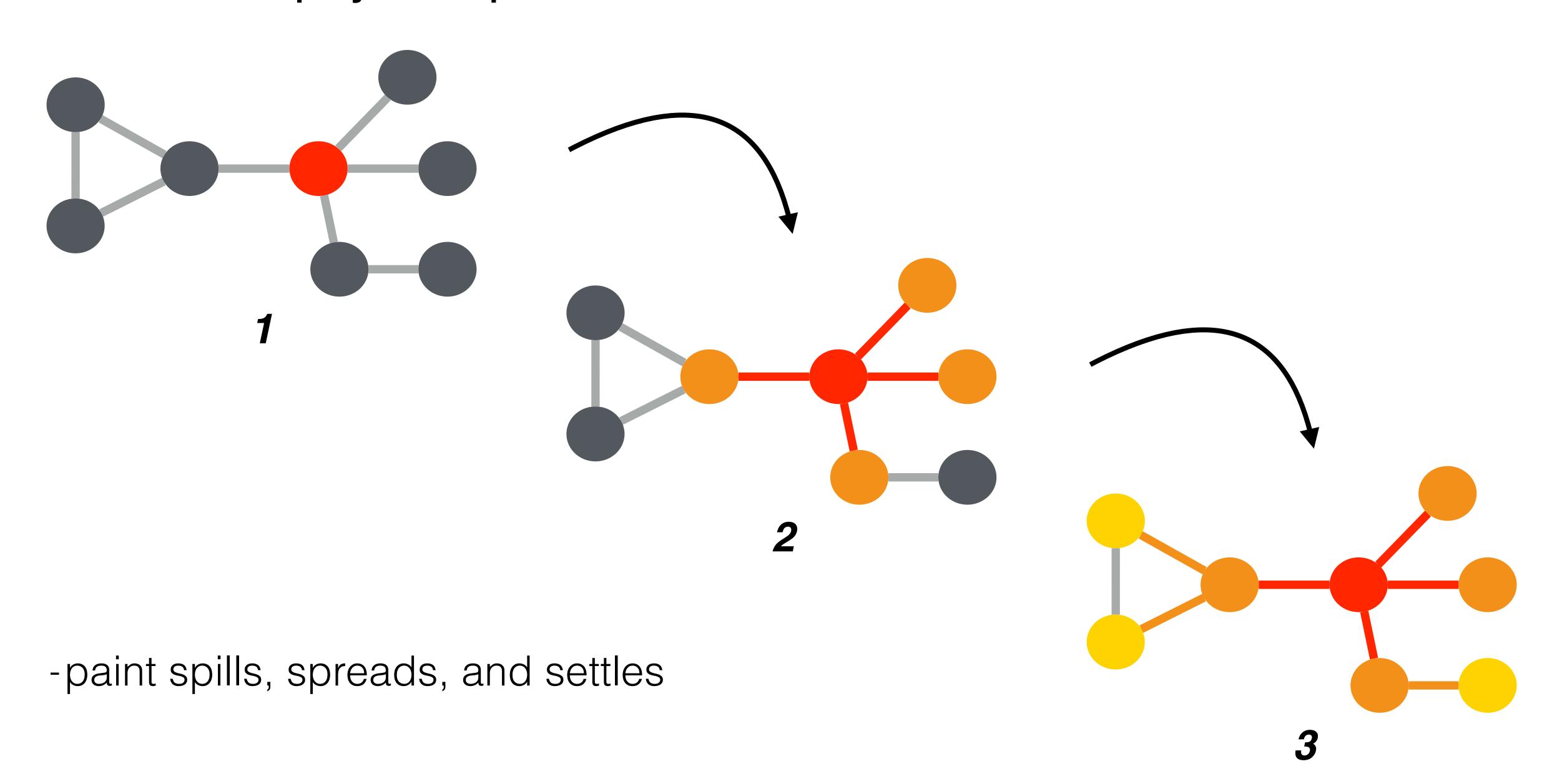
based on the dynamics of random walks

e.g., Approx. PageRank [Andersen *et al.*, 2006]

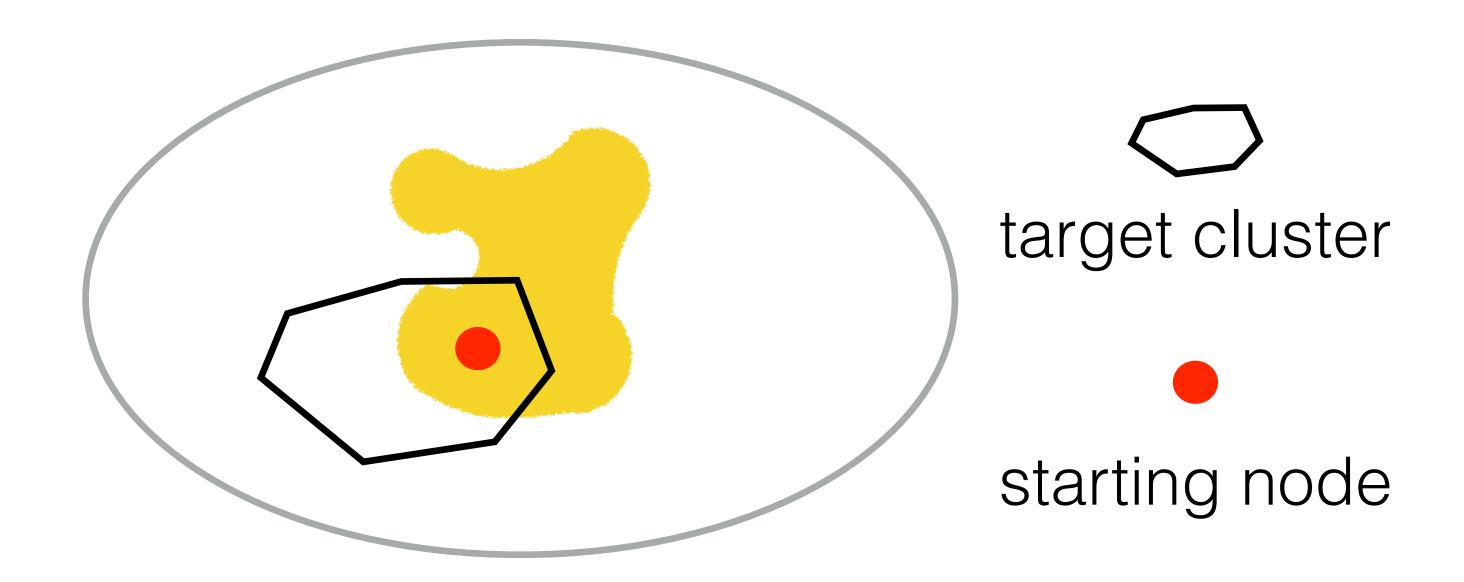
based on the dynamics of network flows

e.g., Capacity Releasing Diffusion [Wang *et al.*, 2017]

Diffusion as physical phenomenon

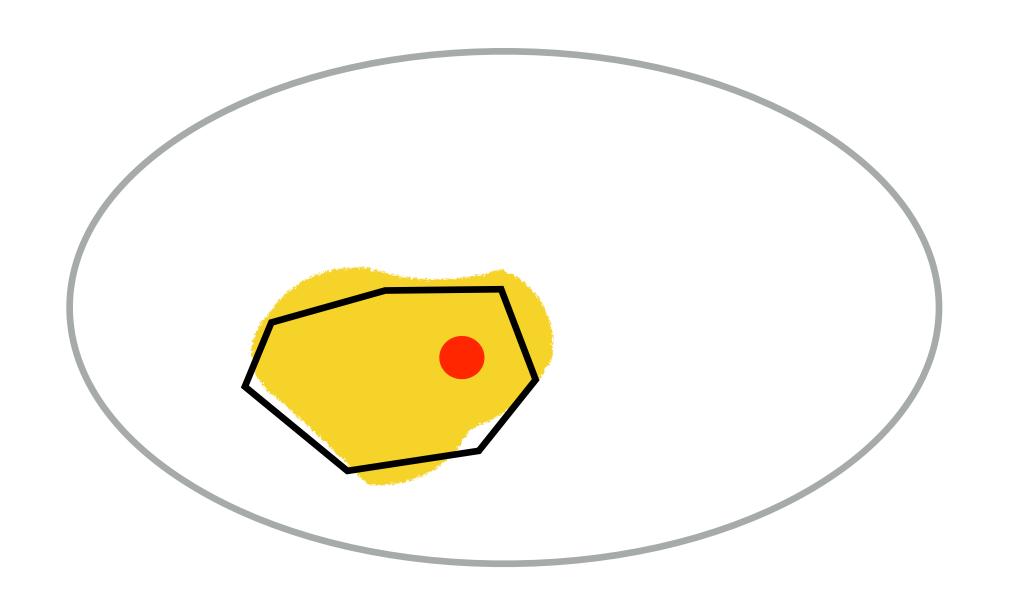


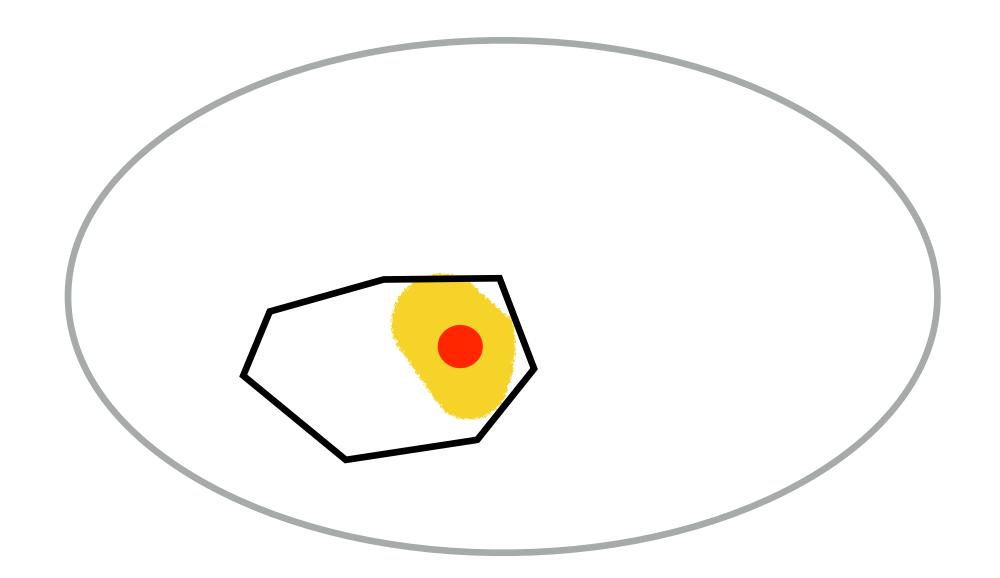
Spectral diffusions leak mass



- -low precision
- -low recall

Combinatorial diffusions are hard to tune

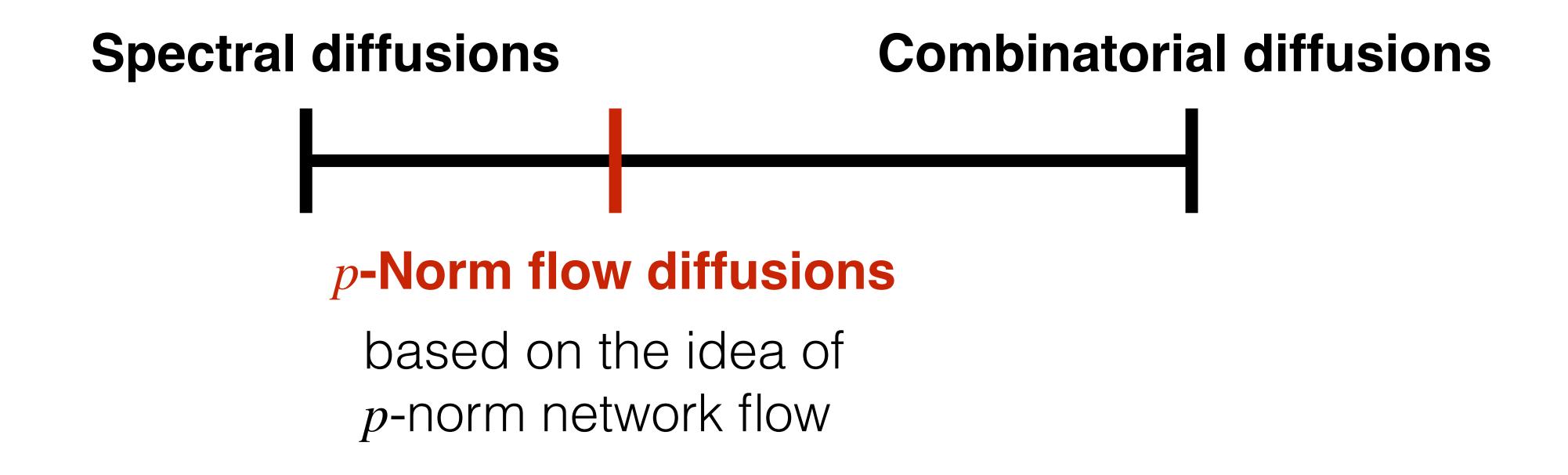




- -strong theoretical guarantees
- -work very well if tuned correctly

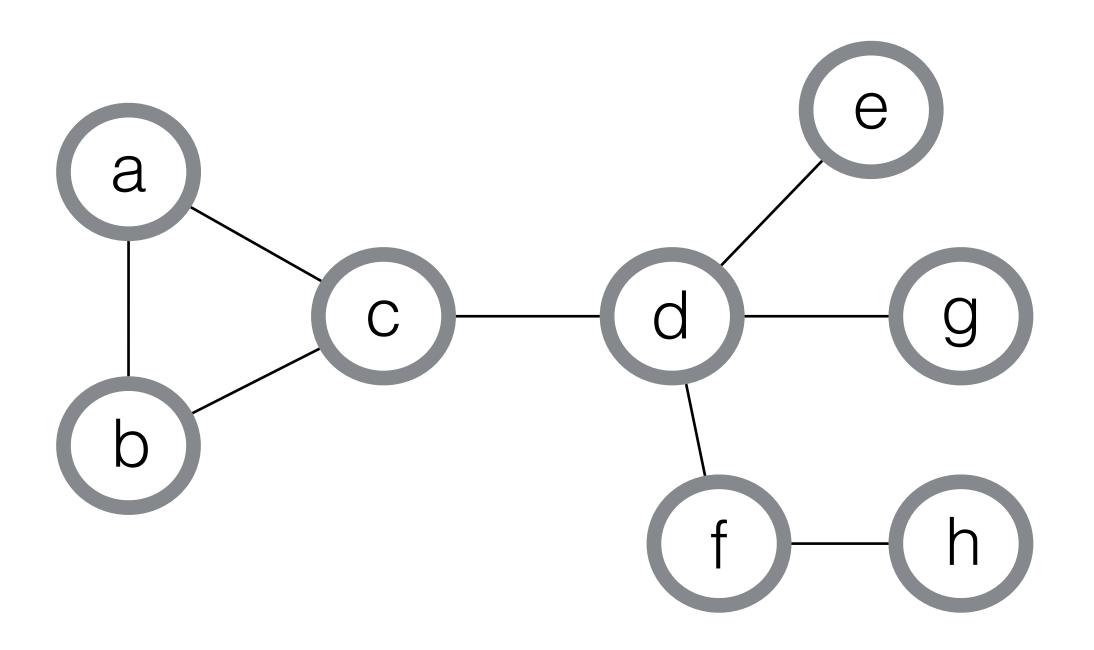
-poor performance if not tuned well

New local graph clustering paradigm



- -as fast as spectral methods e
- -asymptotically as strong as combinatorial methods estimated
- -intuitive interpretation, simple algorithm estation intuitive interpretation intuitive in
- -fewer tuning parameters (than both spectral and combinatorial) e

-Undirected graph G = (V, E)

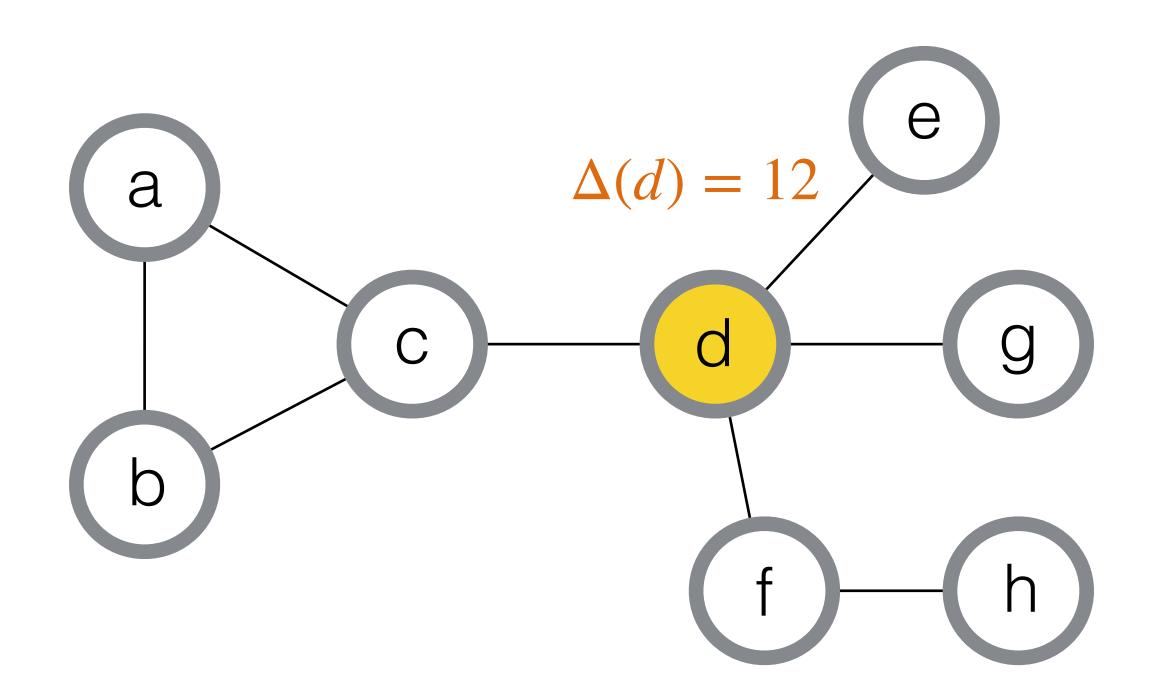


	cidei	ice n	naurix	B	
b	С	d	е	f	

	a	b	С	d	е	f	g	h
(a,b)	1	-1						
(a,c)	1		-1					
(b,c)		1	-1					
(c,d)			1	-1				
(d,e)				1	-1			
(d,f)				1		-1		
(d,g)				1			-1	
(f,h)						1		-1

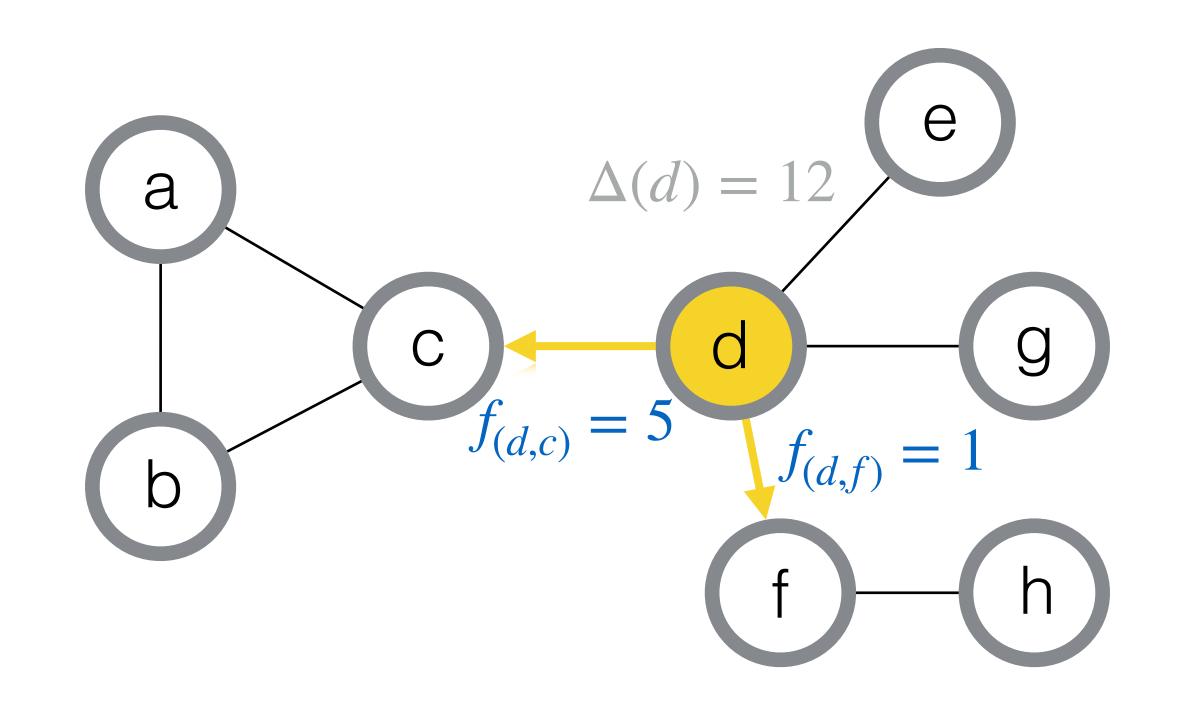
- -B is $|E| \times |V|$ signed incidence matrix where the row of edge (u, v) has two non-zero entries, -1 at column u and 1 at column v
- -Ordering of edges and direction is arbitrary

 $-\Delta \in \mathbb{R}_+^{|V|}$ specifies initial mass on nodes.

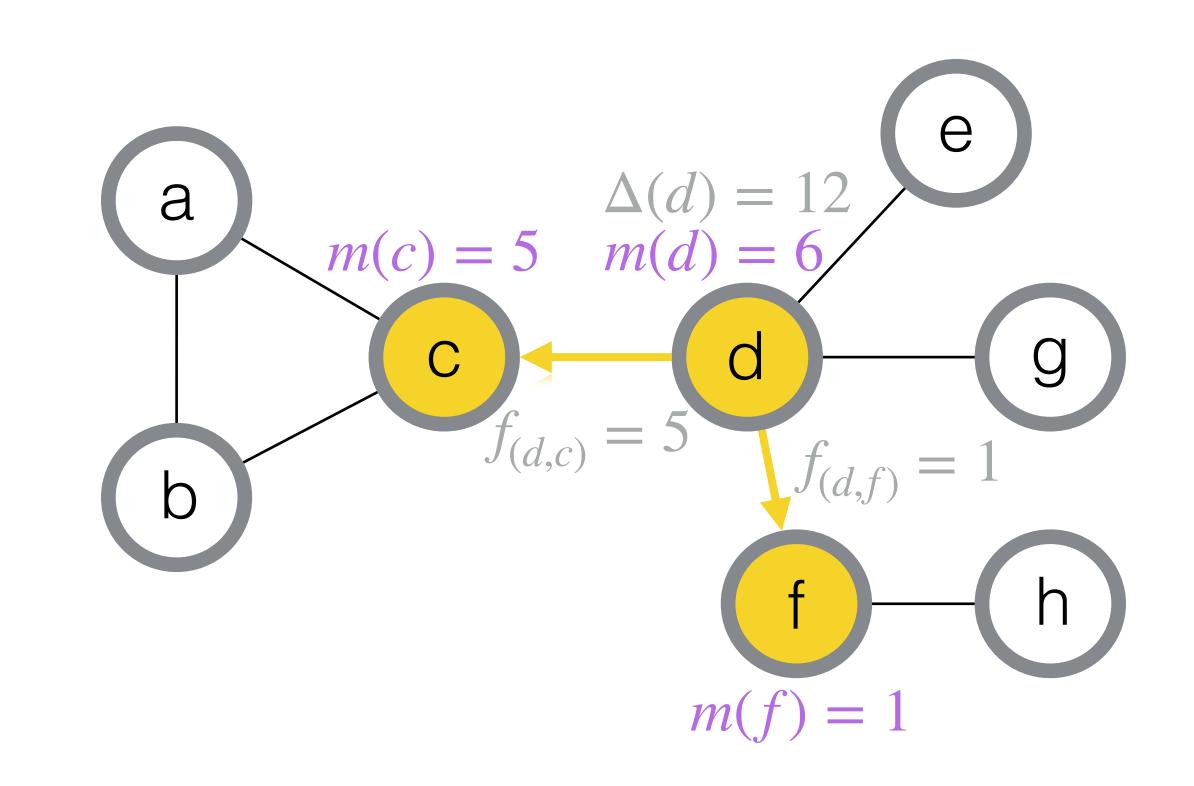


 $\Delta \in \mathbb{R}_{+}^{|V|}$ specifies initial mass on nodes.

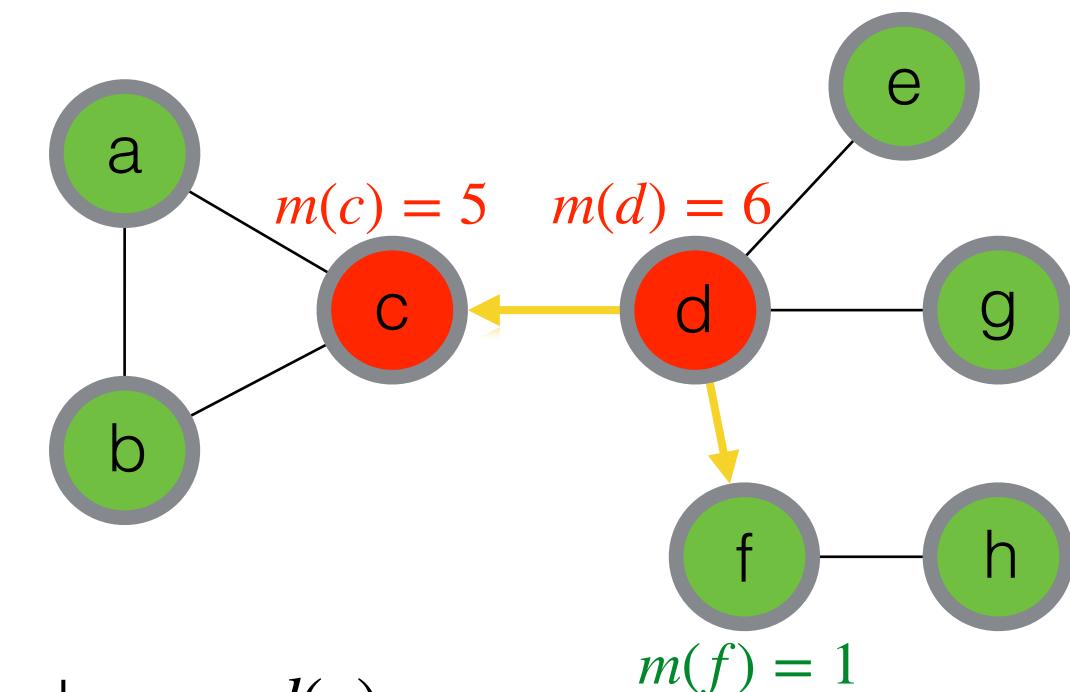
 $-f \in \mathbb{R}^{|E|}$ specifies the amount of flow.



- $-\Delta \in \mathbb{R}_{+}^{|V|}$ specifies initial mass on nodes.
- $-f \in \mathbb{R}^{|E|}$ specifies the amount of flow.
- $-m := B^{\mathsf{T}} f + \Delta$ specifies **net mass** on nodes.



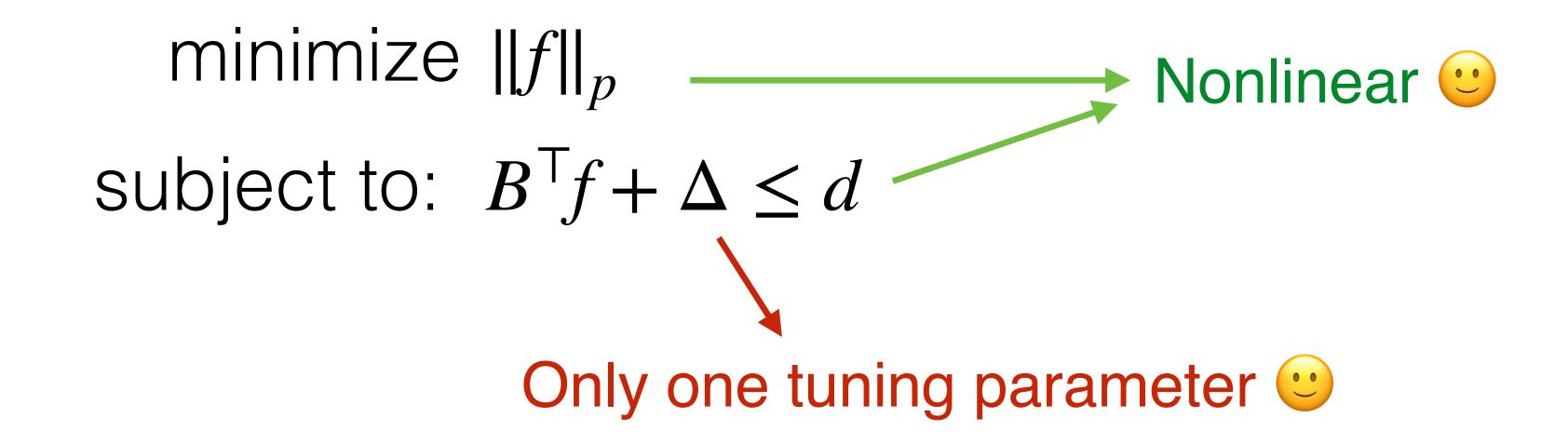
- $-\Delta \in \mathbb{R}_{+}^{|V|}$ specifies initial mass on nodes.
- $-f \in \mathbb{R}^{|E|}$ specifies the amount of flow.
- $-m := B^{\mathsf{T}} f + \Delta$ specifies net mass on nodes.



- -Each node v has capacity equal to its degree d(v).
- -A flow f is feasible if $[B^{\mathsf{T}}f + \Delta](v) \leq d(v), \forall v$.

p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:



-Out of all feasible flows f, we are interested in the one having minimum p-norm, where $p \in [2,\infty)$.

p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:

minimize
$$||f||_p$$

subject to:
$$B^{\mathsf{T}} f + \Delta \leq d$$

- Versatility: different p-norm flows explore different structures in a graph

_Locality:
$$||f^*||_0 \le |\Delta| := \sum_{v \in V} \Delta(v)$$

p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:

minimize
$$||f||_p$$
 subject to: $B^{\mathsf{T}}f + \Delta \leq d$

-The dual problem provides node embeddings

minimize
$$x^{T}(d-\Delta)$$
 Biased towards seed node subject to: $||Bx||_{q} \le 1$ $x \ge 0$ $1/p + 1/q = 1$

-Obtain a cluster by applying sweep cut on x

p-Norm flow diffusions - local clustering guarantees

-Conductance of target cluster C

$$\phi(C) = \frac{|\{(u,v) \in E : u \in C, v \notin C\}|}{\min{\{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}}} \quad \text{where } \operatorname{vol}(C) := \sum_{v \in C} d(v)$$

- -Seed set $S := \operatorname{supp}(\Delta)$.
- -Assumption (sufficient overlap): $\frac{\mathbf{vol}(S \cap C) \ge \beta \mathbf{vol}(S)}{\mathbf{vol}(S \cap C) \ge \alpha \mathbf{vol}(C)} \qquad \alpha, \beta \ge \frac{1}{\log^t \mathbf{vol}(C)} \text{ for some } t$
- -The output cluster $ilde{C}$ satisfies

$$\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\phi(C)^{1-1/p})$$

- -Cheeger-type bound $\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\sqrt{\phi(C)})$ for p=2
- -Constant approximate $\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\phi(C))$ for $p \to \infty$

p-Norm flow diffusions - local clustering guarantees

-Conductance of target cluster C

$$\phi(C) = \frac{|\{(u,v) \in E : u \in C, v \notin C\}|}{\min \{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}} \quad \text{where } \operatorname{vol}(C) := \sum_{v \in C} d(v)$$

- -Seed set $S := \text{supp}(\Delta)$.
- -Assumption (sufficient overlap):

$$vol(S \cap C) \ge \beta vol(S)$$

 $vol(S \cap C) \ge \alpha vol(C)$

$$\frac{\operatorname{vol}(S \cap C) \ge \beta \operatorname{vol}(S)}{\operatorname{vol}(S \cap C) \ge \alpha \operatorname{vol}(C)} \quad \alpha, \beta \ge \frac{1}{\log^t \operatorname{vol}(C)} \text{ for some } t$$

-The output cluster $ilde{C}$ satisfies

$$\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\phi(C)^{1-1/p})$$

- -Cheeger-type bound $\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\sqrt{\phi(C)})$ for p=2
- -Constant approximate $\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\phi(C))$ for $p \to \infty$

Proof based on analysis of primal and dual objective and constraints.

Larger p penalizes more on the flows that cross "bottleneck" edges, leading to less leakage.

p-Norm flow diffusions - simple strongly local algorithm

-Solve an equivalent penalized dual formulation by a variant of randomized coordinate descent.

Update net mass.

Initially each node has a net mass equals the initial mass. **Iterate:**

Pick a node v whose net mass exceeds its capacity. Send excess mass to its neighbors.

p-Norm flow diffusions - simple strongly local algorithm

-Solve an equivalent penalized dual formulation by a variant of randomized coordinate descent.

Initially each node has a net mass equals the initial mass.

Iterate:

Pick a node v whose net mass exceeds its capacity.

Send excess mass to its neighbors.

Update net mass.

Natural tradeoff between speed and robustness to noise

Worst-case running time
$$\mathcal{O}\left((\Delta)\left(\frac{|\Delta|}{\epsilon}\right)^{2/q-1}\log\frac{1}{\epsilon}\right)$$
.

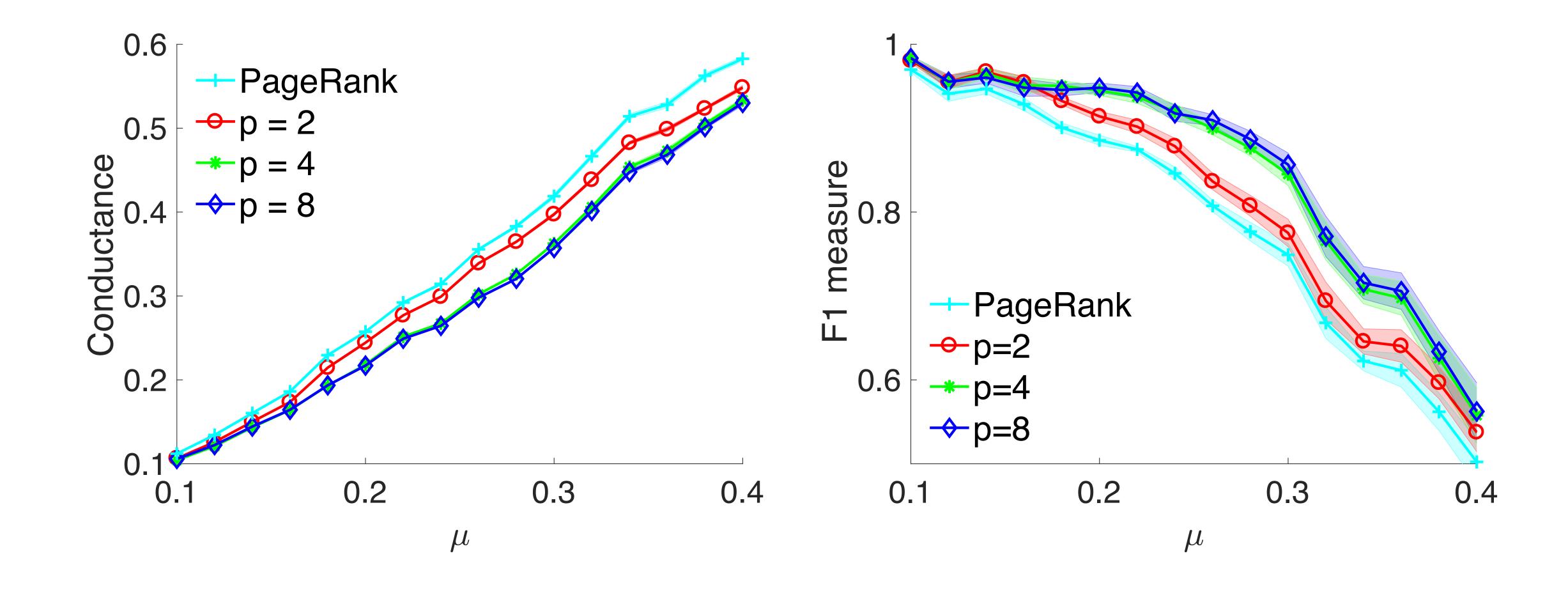
Total amount of initial mass

-Linear convergence when q = 2.

p-Norm flow diffusions - empirical performance

-LFR synthetic model

- μ is a parameter that controls noise, the higher the more noise.



p-Norm flow diffusions - empirical performance

- Facebook social network for Colgate University, students in Class of 2009

	PageRank	p = 2	p = 4	very clean
Conductance	0.13	0.13	0.12	ground
F1 measure	0.96	0.96	0.97	truth

- Facebook social network for Johns Hopkins University, students of the same major

	PageRank	p = 2	p = 4	average
Conductance	0.25	0.23	0.22	ground
F1 measure	0.83	0.85	0.87	truth

-Orkut, large-scale on-line social network, user-defined group

	PageRank	p = 2	p = 4	very nois
Conductance	0.37	0.35	0.33	ground
F1 measure	0.66	0.71	0.73	truth

Julia implementation: pNormFlowDiffusion on GitHub(7)

- -Includes demonstrations and visualizations on LFR and Facebook social networks.
- -Contains all code to reproduce the results in our paper.

	Local running time, fast computation	Good theoretical guarantee	Simple algorithm, less tuning
Spectral diffusion (e.g. PageRank)			
Combinatorial diffusion (e.g. CRD)			
p-Norm flow diffusion			

Thank you!