

Data Valuation using Reinforcement Learning

Jinsung Yoon, Sercan O. Arik, Tomas Pfister

Google Cloud AI

Google Cloud

2020 International Conference on Machine Learning (ICML 2020)

Problem Definition

- What is data valuation?
 - How much does each data contribute to the trained model

- Learn in reliable way

Data valuation

- Fair valuation for the labelers and data provider
- Insights about the dataset

- Learn in reliable way
- Corrupted sample discovery

Dog

High-value samples

Low-value samples

- Learn in reliable way

• Robust learning with noisy (or cheaply-acquired) datasets

• Augmented learning

High valued samples

- Learn in reliable way

Domain adaptation

Google Cloud

• Assigns higher values on the samples from the target distribution

Related works - Leave-one-out

• Not reasonable when there are two similar training samples.

C Google Cloud

Related works - Data Shapley

• **Computational complexity is exponential** with the number of samples.

Challenges & Motivation

- The search space is extremely large.
 - Impossible to explore the entire space.

• Training processes can be non-differentiable

- Selection operation (i.e. sampler block) is non-differentiable.
- Performance metrics can be non-differentiable (accuracy, AUC).
- End-to-end back-propagation may not be possible.
- **Reinforcement learning** is an efficient way to explore large search space and to handle non-differentiable process.

High-level figure for DVRL

• Jointly train **selector** and **predictor** in an end-to-end way.

Problem formulation

To minimize the validation loss

$$\min_{\substack{h_{\phi} \\ \text{s.t.}}} \mathbb{E}_{(\mathbf{x}^{v}, y^{v}) \sim P^{t}} \Big[\mathcal{L}_{h}(f_{\theta}(\mathbf{x}^{v}), y^{v}) \Big]$$

s.t.
$$f_{\theta} = \arg\min_{\hat{f} \in \mathcal{F}} \mathbb{E}_{(\mathbf{x}, y) \sim P} \Big[h_{\phi}(\mathbf{x}, y) \cdot \mathcal{L}_{f}(\hat{f}(\mathbf{x}), y) \Big]$$

- Components
 - Training set: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N \sim \mathcal{P}$
 - $\circ \quad \text{Validation set: } \mathcal{D}^v = \{(\mathbf{x}_k^v, y_k^v)\}_{k=1}^L \sim \mathcal{P}^t$
 - Predictor model: $f_{ heta}: \mathcal{X} \to \mathcal{Y}$
 - \circ Data valuation model: $h_\phi: \mathcal{X} \cdot \mathcal{Y}
 ightarrow [0,1]$

C Google Cloud

Weighted optimization for predictor

Block diagram

Experiments - How to **quantitatively** evaluate the data valuation?

- Remove high / low valued samples
- Corrupted sample discovery
- Robust learning with noisy data
- Domain adaptation

Results - Remove high / low valued samples

- **Standard supervised learning setting** (train, validation, test datasets come from the same distribution)
- Remove high valued samples: Fastest performance degradation
- Remove low valued samples: **Slowest** performance degradation

Results - Corrupted sample discovery

• Corrupted sample setting (20% of label noise)

Highest True Positive Rate (TPR) for corrupted sample discovery

Results - Robust learning with noisy labels (40%)

Noise (predictor model)	Uniform (WideResNet-28-10) Background (ResNet-32)						
Datasets	CIFAR-10	CIFAR-100	CIFAR-10	CIFAR-100			
Validation Set Only Baseline Baseline + Fine-tuning MentorNet + Fine-tuning Learning to Reweight	$\begin{array}{c} 46.64 \pm 3.90 \\ 67.97 \pm 0.62 \\ 78.66 \pm 0.44 \\ 78.00 \\ 86.92 \pm 0.19 \end{array}$	$\begin{array}{c} 9.94 \pm 0.82 \\ 50.66 \pm 0.24 \\ 54.52 \pm 0.40 \\ 59.00 \\ 61.34 \pm 2.06 \end{array}$	$ \begin{vmatrix} 15.90 \pm 3.32 \\ 59.54 \pm 2.16 \\ 82.82 \pm 0.93 \\ - \\ 86.73 \pm 0.48 \end{vmatrix} $	$8.06 \pm 0.76 \\37.82 \pm 0.69 \\54.23 \pm 1.75 \\- \\59.30 \pm 0.60$			
DVRL	89.02 ± 0.27	$\textbf{66.56} \pm \textbf{1.27}$	$\parallel \textbf{ 88.07} \pm \textbf{0.35}$	$\textbf{60.77} \pm \textbf{0.57}$			
Clean Only (60% Data) Zero Noise	$\begin{array}{c} 94.08 \pm 0.23 \\ 95.78 \pm 0.21 \end{array}$	$\begin{array}{c} 74.55 \pm 0.53 \\ 78.32 \pm 0.45 \end{array}$	$\begin{array}{ c c c c c } 90.66 \pm 0.27 \\ 92.68 \pm 0.22 \end{array}$	$\begin{array}{c} 63.50 \pm 0.33 \\ 68.12 \pm 0.21 \end{array}$			

- Proves scalability of DVRL in terms of complex models (WideResNet-28-10 and ResNet-32) and large datasets (CIFAR)
- State-of-the-art robust learning performance

Results - Domain adaptation on Retail dataset

Results - Domain adaptation on Retail dataset

Predictor Model	Store	Train on All		Train on Rest		Train on Specific	
(Metric: RMSPE)	Туре	Baseline	DVRL	Baseline	DVRL	Baseline	DVRL
XGBoost	A B	0.1736	0.1594	0.2369 0.7716	0.2109 0.3607	0.1454 0.0880	0.1430 0.0824
	D D	0.1839 0.1504	0.1502	0.2083 0.1922	0.1551 0.1535	0.1186 0.1349	0.1170 0.1221
Neural Networks	A B C D	$\begin{array}{c} 0.1531 \\ 0.1529 \\ 0.1620 \\ 0.1459 \end{array}$	0.1428 0.0979 0.1437 0.1295	0.3124 0.8072 0.2153 0.2625	0.2014 0.5461 0.1804 0.1624	0.1181 0.0683 0.0682 0.0759	0.1066 0.0682 0.0677 0.0708

- Significant gain on Train on Rest setting (largest domain mismatch)
- **Reasonable gain** on Train on All setting (most common setting)

• Marginal gain on Train on Specific setting (no domain mismatch)

Results - Domain adaptation in other domains

Source	Target	Task	Baseline	Data Shapley	DVRL
Google	HAM10000	Skin Lesion Classification	.296	.378	.448
MNIST	USPS	Digit Recognition	.308	.391	.472
Email	SMS	Spam Detection	.684	.864	.903

• Main source of gain:

• DVRL jointly optimizes the data valuator and corresponding predictor model

Discussion: How many validation samples are needed?

- A small number of validation samples are enough for DVRL training.
 - Reasonable performances even with **10 validation samples** on Adult data.

Codebase of DVRL

DVRL - Github:

https://github.com/google-research/google-research/tree/master/dvrl

DVRL- AI-Hub: https://aihub.cloud.google.com/u/0/p/products%2Fcb6b588c-1582-4868-a944-dc70ebe61a36

Google Cloud