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Problem Definition

● What is data valuation?
○ How much does each data contribute to the trained model
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Objective & Use-cases 
- Learn in reliable way

● Data valuation
○ Fair valuation for the labelers and data provider
○ Insights about the dataset 
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Objective & Use-cases 
- Learn in reliable way

● Corrupted sample discovery

4

High-value samples

Low-value samples



Objective & Use-cases 
- Learn in reliable way

● Robust learning with noisy (or cheaply-acquired) datasets
○ Augmented learning

5

High valued samplesCheaply-acquired samples
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Objective & Use-cases 
- Learn in reliable way

● Domain adaptation
○ Assigns higher values on the samples from the target distribution
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Related works - Leave-one-out

● Not reasonable when there are two similar training samples.
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Related works - Data Shapley

● Computational complexity is exponential with the number of samples.
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Challenges & Motivation
● The search space is extremely large.

○ Impossible to explore the entire space.

● Training processes can be non-differentiable 
○ Selection operation (i.e. sampler block) is non-differentiable.
○ Performance metrics can be non-differentiable (accuracy, AUC).
○ End-to-end back-propagation may not be possible.

● Reinforcement learning is an efficient way to explore large search 
space and to handle non-differentiable process. 
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High-level figure for DVRL

● Jointly train selector and predictor in an end-to-end way. 
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Problem formulation

● Components

○ Training set:

○ Validation set:  

○ Predictor model:

○ Data valuation model:

To minimize the validation loss

Weighted optimization for
predictor
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Block diagram
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Experiments - How to quantitatively evaluate the 
data valuation?

● Remove high / low valued samples

● Corrupted sample discovery

● Robust learning with noisy data

● Domain adaptation
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Results - Remove high / low valued samples

● Standard supervised learning setting (train, validation, test datasets 
come from the same distribution)

● Remove high valued samples: Fastest performance degradation
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Results - Corrupted sample discovery

● Corrupted sample setting (20% of label noise)

● Highest True Positive Rate (TPR) for corrupted sample discovery
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Results - Robust learning with noisy labels (40%)

● Proves scalability of DVRL in terms of complex models 
(WideResNet-28-10 and ResNet-32) and large datasets (CIFAR)

● State-of-the-art robust learning performance
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Results - Domain adaptation on Retail dataset
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Results - Domain adaptation on Retail dataset

● Significant gain on Train on Rest setting (largest domain mismatch)

● Reasonable gain on Train on All setting (most common setting)

● Marginal gain on Train on Specific setting (no domain mismatch)
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Results - Domain adaptation in other domains

● Main source of gain:

○ DVRL jointly optimizes the data valuator and corresponding predictor model
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Discussion: How many validation samples are needed?

● A small number of validation samples are enough for DVRL training.

● Reasonable performances even with 10 validation samples on Adult data.
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DVRL - Github: 
https://github.com/google-research/google-research/tree/master/dvrl

DVRL- AI-Hub: 
https://aihub.cloud.google.com/u/0/p/products%2Fcb6b588c-1582-4868-a944-dc70ebe61a36

Codebase of DVRL
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