Combinatorial Pure Exploration for Dueling Bandits

Yihan Du^{1}
Joint work with Wei Chen ${ }^{2}$ ，Longbo Huang ${ }^{1}$ and Haoyu Zhao ${ }^{1}$
${ }^{1}$ IIIS，Tsinghua University
${ }^{2}$ Microsoft Research Asia

Introduction

清革大皇交叉信息研究院
Motivating example：

－Committee selection
a）Survey a bystander to learn a sample of the unknown preference probability
b）Play as few duels as possible to identify the best performing committee
－Preference－based version of the common candidate－position matching
－Scenarios：crowdsourcing，multi－player game，online advertising

Introduction

－Multi－Armed Bandit（MAB）［1，2］：classic online learning problem
Characterize the exploration－exploitation tradeoff
－Pure exploration［3，4］：important variant of MAB
Identify the best arm with high confidence
－Combinatorial Pure Exploration for Multi－Armed Bandit（CPE－MAB）［5］：
Given a collection of arm subsets with certain combinatorial structures
Play an arm to identify the best combinatorial subset of arms
－Dueling Bandit［6］：with relative feedback
Applications involving implicit feedback E．g．，social surveys，market research

Introduction

清草大賩 交叉信息研究院

Combinatorial Pure Exploration for Dueling Bandit（CPE－DB）

－Bipartite graph $\boldsymbol{G}(\boldsymbol{C}, \boldsymbol{S}, \boldsymbol{E})$ ：candidates，positions
－Preference matrix \boldsymbol{P} ：define the preference probability of two candidates on one position
－Preference probability of two matchings $\boldsymbol{f}\left(\boldsymbol{M}_{1}, \boldsymbol{M}_{2}, P\right)$ is the average preference probability of duels over all positions

Introduction

请茧大竩交叉信息研究院

Combinatorial Pure Exploration for Dueling Bandit（CPE－DB）

－Goal：find the best matching by exploring the duels at all the positions
－Metric of the＂best＂matching：
a）Borda winner：the matching that maximizes the average preference probability over all valid matchings

b）Condorcet winner：the matching that always wins when compared to others．
－Applications：preference－based version of the common candidate－position matching

E．g．，committee selection，crowdsourcing，online advertising

Borda Metric－Reduction

Reduction of CPE－DB for Borda winner to conventional CPE－MAB［5］

CPE－MAB［5］：pull and observe a numerical reward of edge e

Redefine the rewards：

a）Reward of edge $e w(e)$ ：average preference probability of e over the edges at the same position in $M \in \mathcal{M}$
b）Reward of matching $M w(M)$ ：sum of the rewards of its containing edges
 a factor l times average preference probability of M over all $M \in \mathcal{M}$
Identify Borda winner $\overbrace{}^{\text {equivalent }}$ identify matching with the maximum reward

But how to learn $w(e)$ efficiently under the dueling bandit setting？

Borda Metric－CLUCB－Borda－PAC

Microsoft

CLUCB－Borda－PAC is built on CLUCB［5］
Naive unbiased sampler for all matchings will cost exponential time New：
a）Apply a fully－polynomial almost uniform sampler $\boldsymbol{S}(\boldsymbol{\eta})$ for perfect matchings［7］
b）The biased estimator leads to additional complication in analysis
c）Novel lower bound for CPE－DB under Borda metric
Main idea：efficiently transform numerical observations to equivalent relative observations with $S(\eta)$

Borda Metric－CLUCB－Borda－Exact

请革大孚交叉信息研究院

Adapt CLUCB－Borda－PAC to the exact algorithm

Main idea：

a）Use the＂guess gap＂（multiple epochs）technique to obtain the exact solution
b）With a loss of logarithmic factors in sample complexity upper bound．

Borda Metric－Theoretical Result

Theorem 1 （CLUCB－Borda－PAC）．With probability at least $1-\delta$ ，CLUCB－Borda－PAC returns an approximate Borda winner with sample complexity

$$
\tilde{O}\left(\sum_{e \in E} \min \left\{\frac{\operatorname{width}(G)^{2}}{\left(\Delta_{e}^{B}\right)^{2}}, \frac{1}{\varepsilon^{2}}\right\}\right)
$$

Borda hardness：

$$
H^{B}:=\sum_{e \in E} \frac{1}{\left(\Delta_{e}^{B}\right)^{2}}
$$

Theorem 2 （CLUCB－Borda－Exact）．With probability at least $1-\delta$ ，CLUCB－Borda－Exact returns the Borda winner with sample complexity

$$
\tilde{O}\left(\operatorname{width}(G)^{2} H^{B}\right)
$$

Theorem 3 （Borda lower bound）．There exists a problem instance of CPE－DB with Borda winner where any correct algorithm has sample complexity

$$
\tilde{\Omega}\left(H^{B}\right)
$$

Remark：our algorithms are tight on the hardness metric H_{B}

Condorcet Metric－CAR－Cond

清草大咱 交叉信息研究院
Identify Condorcet winner $\stackrel{\sim}{\text { equivalent }}$

$$
\max _{x=\chi_{M_{1}}} \min _{y=\chi_{M_{2}}} \frac{1}{\ell} x^{T} P y \quad \text { (the optimal value }=\frac{1}{2} \text {) }
$$

$\chi_{M} \in\{0,1\}^{m}$ ：vector representation of matching M
This discrete optimization problem has exponential search space How to efficiently solve it ？

Use continuous relaxation and just consider $\max _{x \in \mathcal{P}(\mathcal{M})} \min _{y \in \mathcal{P}(\mathcal{M})} \frac{1}{\ell} x^{T} P y$

$$
\mathcal{P}(\mathcal{M}): \text { convex hull of all vectors } \chi_{M} \text { in decision class } \mathcal{M}
$$

Design an offline oracle（FPTAS）to solve this optimization problem

Condorcet Metric－CAR－Cond

Online part：

a）For each edge e ，we force e in／out of the convex hull（polytope） $\mathcal{P}(\mathcal{M})$ ：
b）Check the optimal value of $\max _{x \in \mathcal{P}\left(\mathcal{M}, A_{1}, R_{1}\right)} \min _{y \in \mathcal{P}\left(\mathcal{M}, A_{2}, R_{2}\right)} \frac{1}{\ell} x^{T} Q y \quad$（the optimal value $=\frac{1}{2}$ ）
c）Determine whether or not e is in Condorcet winner

Theorem 4 （CAR－Cond）．With probability at least $1-\delta$ ，CAR－Cond returns the Condorcet winner with sample complexity

$$
\tilde{O}\left(\sum_{j=1}^{\ell} \sum_{e \neq e^{\prime}, e, e^{\prime} \in E_{j}} \frac{1}{\left(\Delta_{e, e^{\prime}}^{C}\right)^{2}}\right)
$$

Further design CAR－Parallel using the verification technique to improve the result for small δ

Remark：When $l=1$ ，the problem reduces to the original Condorcet dueling bandit problem The result of our CAR－Parallel matches the state－of－the－art［8］

Conclusion

I．Formulate CPE－DB，with metrics Borda winner and Condorcet winner．

II．For Borda winner，establish reduction to CPE－MAB［5］，propose efficient PAC and exact algorithms，nearly optimal for a subclass of problems．

III．For Condorcet winner，design offline FPTAS and online CAR－Cond，which is the first polynomial algorithm for CPE－DB with Condorcet winner．

Future Work

清革大皇交叉信息研究院

I．Find a lower bound for polynomial algorithms in CPE－DB with Condorcet winner

II．Study a more general CPE－DB model and other preference functions $f\left(M_{1}, M_{2}, P\right)$

References

［1］Peter Auer，Nicolo Cesa－Bianchi，and Paul Fischer．2002．Finite－time analysis of the multi－armed bandit problem．Machine learning 47，2－3（2002），235－256．
［2］Shipra Agrawal and Navin Goyal．2012．Analysis of Thompson sampling for the multi－armed bandit problem．In COLT．39－1．
［3］Even－Dar，E．，Mannor，S．，and Mansour，Y．Action elimination and stopping conditions for the multi－ armed bandit and reinforcement learning problems．Journal of machine learning research，7（Jun）：1079－ 1105， 2006.
［4］Chen，L．and Li，J．Open problem：Best arm identification：Almost instance－wise optimality and the gap entropy conjecture．In Conference on Learning Theory，pp．1643－1646， 2016.
［5］Chen，S．，Lin，T．，King，I．，Lyu，M．R．，and Chen，W．Combinatorial pure exploration of multi－armed bandits．In Advances in Neural Information Processing Systems，pp．379－387， 2014.
［6］Yisong Yue and Thorsten Joachims．2011．Beat the mean bandit．In ICML．241－248．
［7］Jerrum，M．，Sinclair，A．，and Vigoda，E．A polynomial－time approximation algorithm for the permanent of a matrix with nonnegative entries．Journal of the ACM（JACM），51（4）：671－697， 2004.
［8］Karnin，Z．S．Verification based solution for structured mab problems．In Advances in Neural Information Processing Systems，pp．145－153， 2016.

法革大息交又信息研究院

THANK YOU！

Email：duyh18＠mails．tsinghua．edu．cn

