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Introduction 

Motivating example: 

• Committee selection 

a) Survey a bystander to learn a sample of the 

unknown preference probability  

b) Play as few duels as possible to identify the best 

performing committee 
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• Preference-based version of the common 

candidate-position matching  

• Scenarios: crowdsourcing, multi-player 

game, online advertising 



Introduction 

• Multi-Armed Bandit (MAB) [1,2]:  classic online learning problem

 Characterize the exploration-exploitation tradeoff 

• Pure exploration [3,4]: important variant of MAB   

  Identify the best arm with high confidence 

• Combinatorial Pure Exploration for Multi-Armed Bandit (CPE-MAB) [5]: 

 Given a collection of arm subsets with certain combinatorial structures 

 Play an arm to identify the best combinatorial subset of arms 

• Dueling Bandit [6]: with relative feedback 

 Applications involving implicit feedback  

 E.g., social surveys, market research 
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Introduction 

Combinatorial Pure Exploration for Dueling Bandit (CPE-DB) 

candidates positions 

Preference Matrix 

• Bipartite graph 𝑮(𝑪, 𝑺, 𝑬) :  candidates, positions 

• Preference matrix 𝑷 : define the preference probability of 

two candidates on one position 

• Preference probability of two matchings 𝒇(𝑴𝟏, 𝑴𝟐, 𝑷) is 

the average preference probability of duels over all positions 
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Example: 

𝑀1 = 𝑒1, 𝑒4 , 𝑀2 = 𝑒2, 𝑒5  

𝑓(𝑀1, 𝑀2, 𝑃) =
1

2
(𝑃𝑒1, 𝑒2 

+ 𝑃𝑒4, 𝑒5 

) 

 



Introduction 

Combinatorial Pure Exploration for Dueling Bandit (CPE-DB) 

candidates positions 

Preference Matrix 

Borda winner Condorcet winner 

 

• Goal: find the best matching by exploring the duels at all the 

positions 

• Metric of the “best” matching:  

a) Borda winner: the matching that maximizes the 

average preference probability over all valid matchings 

b) Condorcet winner: the matching that always wins 

when compared to others. 

• Applications: preference-based version of the common 

candidate-position matching 

      E.g., committee selection, crowdsourcing, online advertising 
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Borda Metric - Reduction 

Reduction of CPE-DB for Borda winner to conventional CPE-MAB [5] 

      CPE-MAB [5] : pull and observe a numerical reward of edge 𝑒 

 

 

 

 

 

 

Identify Borda winner                     identify  matching with the maximum reward 

 

                    But how to learn 𝑤(𝑒) efficiently under the dueling bandit setting? 

equivalent 

6 

a) Reward of edge 𝑒  𝑤(𝑒): average preference probability of 𝑒 over the edges at the same 

position in 𝑀 ∈ ℳ   

 

b) Reward of matching 𝑀  𝑤(𝑀): sum of the rewards of its containing edges 

            a factor 𝑙 times average preference probability of 𝑀 over all 𝑀 ∈ ℳ  

Redefine the rewards: 



Borda Metric - CLUCB-Borda-PAC 

CLUCB-Borda-PAC is built on CLUCB [5] 

Naive unbiased sampler for all matchings will cost exponential time 

New:  

a) Apply a fully-polynomial almost uniform sampler 𝑺(𝜼) for perfect matchings [7]  

b) The biased estimator leads to additional complication in analysis 

c) Novel lower bound for CPE-DB under Borda metric 

Main idea: efficiently transform numerical observations to equivalent relative  

     observations with 𝑆(𝜂)  

Use a polynomial almost 

uniform sampler 𝑆(𝜂) for 

perfect matchings to sample 𝑀’ 
Learn 𝑤(𝑒)  

Compare 𝑒 with the 

edge at the same 

position in 𝑀’ 

Biased estimator 7 



Borda Metric - CLUCB-Borda-Exact 

Adapt CLUCB-Borda-PAC to the exact algorithm 

Main idea:  

a) Use the “guess gap” (multiple epochs) technique to obtain the exact solution 

b) With a loss of logarithmic factors in sample complexity upper bound. 

Perform CLUCB-

Borda-PAC as a 

sub-procedure 

Iterating epoch 

𝑞 = 1,2, … 

Cut the confidence and 

accuracy in a half 

Return exact 

Borda winner 

When the accuracy is smaller than the gap 
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Borda Metric – Theoretical Result 

Theorem 1 (CLUCB-Borda-PAC). With probability at least 1 − 𝛿, CLUCB-Borda-PAC returns 

an approximate Borda winner with sample complexity 

Theorem 2 (CLUCB-Borda-Exact). With probability at least 1 − 𝛿, CLUCB-Borda-Exact returns 

the Borda winner with sample complexity 

Theorem 3 (Borda lower bound). There exists a problem instance of CPE-DB with Borda winner 

where any correct algorithm has sample complexity  

Remark: our algorithms are tight on the hardness metric 𝐻𝐵 
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Borda hardness: 



Condorcet Metric – CAR-Cond 

Identify Condorcet winner 
equivalent 

𝜒𝑀 ∈ 0,1 𝑚: vector representation of matching 𝑀  

This discrete optimization problem has exponential search space 

How to efficiently solve it ? 

Use continuous relaxation and just consider  

𝒫(ℳ): convex hull of all vectors 𝜒𝑀 in decision class ℳ  

Design an offline oracle (FPTAS) to solve this optimization problem 

(the optimal value = 
1

2
 ) 

10 Projected subgradient descent, Frank-Wolfe algorithm 



Condorcet Metric – CAR-Cond 

Theorem 4 (CAR-Cond). With probability at least 1 − 𝛿, CAR-Cond returns the Condorcet winner 

with sample complexity 

Online part: 

a) For each edge 𝑒, we force 𝑒 in / out of the convex hull (polytope) 𝒫(ℳ):  

b) Check the optimal value of  

c) Determine whether or not 𝑒 is in Condorcet winner 

(the optimal value = 
1

2
 ) 

Further design CAR-Parallel using the verification technique to improve the result for small 𝛿  

Remark: When 𝑙 = 1, the problem reduces to the original Condorcet dueling bandit problem 

                 The result of our CAR-Parallel matches the state-of-the-art [8] 
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Conclusion 

I. Formulate CPE-DB, with metrics Borda winner and Condorcet winner. 

II. For Borda winner, establish reduction to CPE-MAB [5], propose efficient PAC 

and exact algorithms, nearly optimal for a subclass of problems. 

III. For Condorcet winner, design offline FPTAS and online CAR-Cond, which is the 

first polynomial algorithm for CPE-DB with Condorcet winner. 
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Future Work 

I. Find a lower bound for polynomial algorithms in CPE-DB with Condorcet winner 

 

II.  Study a more general CPE-DB model and other preference functions 𝑓(𝑀1, 𝑀2, 𝑃) 
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