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Introduction

Motivating example:

* Committee selection

a) Survey a bystander to learn a sample of the
unknown preference probability

b) Play as few duels as possible to identify the best
performing committee

» Preference-based version of the common
candidate-position matching

» Scenarios: crowdsourcing, multi-player
game, online advertising
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« Multi-Armed Bandit (MAB) [1,2]: classic online learning problem
Characterize the exploration-exploitation tradeoff

* Pure exploration [3,4]: important variant of MAB
Identify the best arm with high confidence

« Combinatorial Pure Exploration for Multi-Armed Bandit (CPE-MAB) [5]:
Given a collection of arm subsets with certain combinatorial structures
Play an arm to identify the best combinatorial subset of arms

* Dueling Bandit [6]: with relative feedback
Applications involving implicit feedback n .

E.g., social surveys, market research E= 2
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Introduction

Combinatorial Pure Exploration for Dueling Bandit (CPE-DB)

« Bipartite graph G(C, S, E) : candidates, positions

- Preference matrix P : define the preference probability of ~candidates  positions

two candidates on one position

S1

» Preference probability of two matchings f(M,, M,, P) is
the average preference probability of duels over all positions

59
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Example:
M1 = {ell 84}) M2 = {82) 85}

1
f(MpMz;P) =E(Pel,e2 +Pe4,e5)
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Combinatorial Pure Exploration for Dueling Bandit (CPE-DB)

candidates positions €1 e €3 €4 C5
ep 05 045 1 0
es 055 05 055 0
eg3 0 045 05 0
es O 0O 0 05
es O 0 0 1 05
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« Goal: find the best matching by exploring the duels at all the

0
0
positions 8

* Metric of the “best” matching:

a) Borda winner: the matching that maximizes the Preference Matrix

average preference probability over all valid matchings

b) Condorcet winner: the matching that always wins
when compared to others.

Condorcet winner

« Applications: preference-based version of the common
candidate-position matching

E.g., committee selection, crowdsourcing, online advertising
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Borda Metric - Reduction

Reduction of CPE-DB for Borda winner to conventional CPE-MAB [5]
CPE-MAB [5] : pull and observe a numerical reward of edge e

Redefine the rewards:

a) Reward of edge e w(e): average preference probability of e over the edges at the same
positionin M € M

b) Reward of matching M w(M): sum of the rewards of its containing edges <—>
a factor [ times average preference probability of M overall M € M

equivalent
Identify Borda winner <::> identify matching with the maximum reward

?_ But how to learn w(e) efficiently under the dueling bandit setting?
o | ;
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Borda Metric - CLUCB-Borda-PAC 124 xmsan B Microsoft

CLUCB-Borda-PAC is built on CLUCB [5]

Naive unbiased sampler for all matchings will cost exponential time

New:

a) Apply a fully-polynomial almost uniform sampler S(n) for perfect matchings [7]

b) The biased estimator leads to additional complication in analysis

c) Novel lower bound for CPE-DB under Borda metric

Main idea: efficiently transform numerical observations to equivalent relative
observations with S(n)

Use a polynomial almost Compare e with the
Learn w(e) | ——| uniform sampler S(n) for —> | edge at the same
perfect matchings to sample M’ T position in M’

Biased estimator .




Borda Metric - CLUCB-Borda-Exact

Adapt CLUCB-Borda-PAC to the exact algorithm

Main idea:
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a) Use the “guess gap” (multiple epochs) technique to obtain the exact solution
b) With a loss of logarithmic factors in sample complexity upper bound.

Iterating epoch
q=12,..

Cut the confidence and
accuracy in a half

Perform CLUCB-
Borda-PAC as a
sub-procedure

!

Return exact
Borda winner

When the accuracy is smaller than the gap
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Theorem 1 (CLUCB-Borda-PAC). With probability at least 1 — 6, CLUCB Borda PAC returns
an approximate Borda winner with sample complexity

Borda Metric — Theoretical Result

B . [width(G)? 1 Borda hardness:
O[S min{ "G 5 1

ecl H :ZW
ecE €

Theorem 2 (CLUCB-Borda-Exact). With probability at least 1 — §, CLUCB-Borda-Exact returns
the Borda winner with sample complexity

O (width(G)*H?)

Theorem 3 (Borda lower bound). There exists a problem instance of CPE-DB with Borda winner
where any correct algorithm has sample complexity

Q(HB)

Remark: our algorithms are tight on the hardness metric Hy
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Condorcet Metric — CAR-Cond Bl \icrosoft

equivalent 1

|dentify Condorcet winner <:> max min -z’ Py

. 1
h imal value ==
TEX AL, Y=X My / (the optimal value 2)

Xxu € {0,1}™: vector representation of matching M

This discrete optimization problem has exponential search space
How to efficiently solve it ?

1

: : : : - T
Use continuous relaxation and just consider ~mMax — 1in —x Py
2€P(M) yeP(M) £

P (M): convex hull of all vectors y,, in decision class M

Design an offline oracle (FPTAS) to solve this optimization problem

Projected subgradient descent, Frank-Wolfe algorithm ] 10
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Online part:
a) For each edge e, we force e in / out of the convex hull (polytope) P (M):

: ax - 1o : 1
b) Check the Optlmal value of e P (AL By) yeP M A Ra) £ Qy (the optimal value = 5)

c) Determine whether or not e is in Condorcet winner

Theorem 4 (CAR-Cond). With probability at least 1 — §, CAR-Cond returns the Condorcet winner

with sample complexity ,
~ 1
o(z > —(Ac,)g)

Jj=1le#e', ee’cE; €€

Further design CAR-Parallel using the verification technique to improve the result for small §

Remark: When [ = 1, the problem reduces to the original Condorcet dueling bandit problem
The result of our CAR-Parallel matches the state-of-the-art [8]

11
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Formulate CPE-DB, with metrics Borda winner and Condorcet winner.

For Borda winner, establish reduction to CPE-MAB [5], propose efficient PAC

and exact algorithms, nearly optimal for a subclass of problems.

For Condorcet winner, design offline FPTAS and online CAR-Cond, which is the

first polynomial algorithm for CPE-DB with Condorcet winner.

12
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Future Work

I.  Find a lower bound for polynomial algorithms in CPE-DB with Condorcet winner

Il.  Study a more general CPE-DB model and other preference functions f (M,, M,, P)

13
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