

Combinatorial Pure Exploration for Dueling Bandits

Yihan Du¹

Joint work with Wei Chen², Longbo Huang¹ and Haoyu Zhao¹

¹ IIIS, Tsinghua University ²Microsoft Research Asia

Motivating example:

- Committee selection
 - a) Survey a bystander to learn a sample of the unknown preference probability
 - b) Play as few duels as possible to identify the best performing committee
- Preference-based version of the common candidate-position matching
- Scenarios: crowdsourcing, multi-player game, online advertising

- Multi-Armed Bandit (MAB) [1,2]: classic online learning problem Characterize the exploration-exploitation tradeoff
- **Pure exploration [3,4]:** important variant of MAB Identify the best arm with high confidence
- Combinatorial Pure Exploration for Multi-Armed Bandit (CPE-MAB) [5]: Given a collection of arm subsets with certain combinatorial structures Play an arm to identify the best combinatorial subset of arms
- **Dueling Bandit [6]:** with relative feedback Applications involving implicit feedback E.g., social surveys, market research

Combinatorial Pure Exploration for Dueling Bandit (CPE-DB)

- **Bipartite graph** G(C, S, E): candidates, positions
- **Preference matrix** *P* : define the preference probability of two candidates on one position
- Preference probability of two matchings $f(M_1, M_2, P)$ is the average preference probability of duels over all positions

Example:

$$M_1 = \{e_1, e_4\}, \quad M_2 = \{e_2, e_5\}$$

 $f(M_1, M_2, P) = \frac{1}{2}(P_{e_1, e_2} + P_{e_4, e_5})$

	e_1	e_2	e_3	e_4	c_5
e_1	0.5	0.45	1	0	0
e_2	0.55	0.5	0.55	0	0
e_3	0	0.45	0.5	0	0
e_4	0	0	0	0.5	0
e_5	0	0	0	1	0.5

Preference Matrix

Combinatorial Pure Exploration for Dueling Bandit (CPE-DB)

- Goal: find the best matching by exploring the duels at all the positions
- Metric of the "best" matching:
 - a) **Borda winner:** the matching that maximizes the average preference probability over all valid matchings
 - **b) Condorcet winner:** the matching that always wins when compared to others.
- Applications: preference-based version of the common candidate-position matching
 - E.g., committee selection, crowdsourcing, online advertising

Borda Metric - Reduction

Reduction of CPE-DB for Borda winner to conventional CPE-MAB [5] CPE-MAB [5] : pull and observe a numerical reward of edge *e*

Redefine the rewards:

- a) Reward of edge $e \ w(e)$: average preference probability of e over the edges at the same position in $M \in \mathcal{M}$
- b) Reward of matching M w(M): sum of the rewards of its containing edges $\langle = \rangle$ a factor l times average preference probability of M over all $M \in \mathcal{M}$

Identify Borda winner identify matching with the maximum reward

But how to learn w(e) efficiently under the dueling bandit setting?

Borda Metric - CLUCB-Borda-PAC

CLUCB-Borda-PAC is built on CLUCB [5] Naive unbiased sampler for all matchings will cost **exponential time New:**

- a) Apply a **fully-polynomial almost uniform sampler** $S(\eta)$ for perfect matchings [7]
- b) The **biased estimator** leads to additional complication in analysis
- c) Novel lower bound for CPE-DB under Borda metric
- **Main idea:** efficiently transform numerical observations to equivalent relative observations with $S(\eta)$

Borda Metric - CLUCB-Borda-Exact

Adapt CLUCB-Borda-PAC to the exact algorithm **Main idea:**

- a) Use the "guess gap" (multiple epochs) technique to obtain the exact solution
- b) With **a loss of logarithmic factors** in sample complexity upper bound.

When the accuracy is smaller than the gap

Borda Metric – Theoretical Result

Theorem 1 (CLUCB-Borda-PAC). With probability at least $1 - \delta$, CLUCB-Borda-PAC returns an approximate Borda winner with sample complexity

$$\tilde{O}\left(\sum_{e \in E} \min\left\{\frac{\mathrm{width}(G)^2}{(\Delta_e^B)^2}, \frac{1}{\varepsilon^2}\right\}\right)$$

Borda hardness: $H^B := \sum_{e \in E} \frac{1}{(\Delta^B_e)^2}$

Theorem 2 (CLUCB-Borda-Exact). With probability at least $1 - \delta$, CLUCB-Borda-Exact returns the Borda winner with sample complexity

 $\tilde{O}\left(\mathrm{width}(G)^2 H^B\right)$

Theorem 3 (Borda lower bound). There exists a problem instance of CPE-DB with Borda winner where any correct algorithm has sample complexity

 $\tilde{\Omega}\left(H^B\right)$

Remark: our algorithms are tight on the hardness metric H_B

Condorcet Metric – CAR-Cond

● Microsoft

Identify Condorcet winner

$$\max_{x=\chi_{M_1}} \min_{y=\chi_{M_2}} \frac{1}{\ell} x^T P y \quad \text{(the optimal value} = \frac{1}{2}\text{)}$$

 $\chi_M \in \{0,1\}^m$: vector representation of matching M

This discrete optimization problem has **exponential search space** How to **efficiently** solve it ?

Use continuous relaxation and just consider $\max_{x \in \mathcal{P}(\mathcal{M})}$

$$\max_{x \in \mathcal{P}(\mathcal{M})} \min_{y \in \mathcal{P}(\mathcal{M})} \frac{1}{\ell} x^T P y$$

 $\mathcal{P}(\mathcal{M})$: convex hull of all vectors χ_M in decision class \mathcal{M}

1

Design an offline **oracle (FPTAS)** to solve this optimization problem

Projected subgradient descent, Frank-Wolfe algorithm

Condorcet Metric – CAR-Cond

Online part:

- a) For each edge e, we force e in / out of the convex hull (polytope) $\mathcal{P}(\mathcal{M})$:
- b) Check the optimal value of $\max_{x \in \mathcal{P}(\mathcal{M}, A_1, R_1)} \min_{y \in \mathcal{P}(\mathcal{M}, A_2, R_2)} \frac{1}{\ell} x^T Q y \qquad \text{(the optimal value = } \frac{1}{2}\text{)}$
- c) Determine whether or not *e* is in Condorcet winner

Theorem 4 (CAR-Cond). With probability at least $1 - \delta$, CAR-Cond returns the Condorcet winner with sample complexity

$$\tilde{O}\left(\sum_{j=1}^{t}\sum_{e\neq e', e,e'\in E_j}\frac{1}{(\Delta_{e,e'}^C)^2}\right)$$

Further design CAR-Parallel using the verification technique to improve the result for small δ

Remark: When l = 1, the problem **reduces** to the original Condorcet dueling bandit problem The result of our CAR-Parallel **matches the state-of-the-art [8]**

Conclusion

- I. Formulate **CPE-DB**, with metrics Borda winner and Condorcet winner.
- II. For Borda winner, establish reduction to CPE-MAB [5], propose efficient PAC and exact algorithms, nearly optimal for a subclass of problems.
- III. For Condorcet winner, design offline FPTAS and online CAR-Cond, which is the first polynomial algorithm for CPE-DB with Condorcet winner.

I. Find a lower bound for polynomial algorithms in CPE-DB with Condorcet winner

II. Study a more general CPE-DB model and other preference functions $f(M_1, M_2, P)$

References

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multi-armed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[2] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson sampling for the multi-armed bandit problem. In COLT. 39–1.

[3] Even-Dar, E., Mannor, S., and Mansour, Y. Action elimination and stopping conditions for the multiarmed bandit and reinforcement learning problems. Journal of machine learning research, 7(Jun):1079– 1105, 2006.

[4] Chen, L. and Li, J. Open problem: Best arm identification: Almost instance-wise optimality and the gap entropy conjecture. In Conference on Learning Theory, pp. 1643–1646, 2016.

[5] Chen, S., Lin, T., King, I., Lyu, M. R., and Chen, W. Combinatorial pure exploration of multi-armed bandits. In Advances in Neural Information Processing Systems, pp. 379–387, 2014.

[6] Yisong Yue and Thorsten Joachims. 2011. Beat the mean bandit. In ICML. 241–248.

[7] Jerrum, M., Sinclair, A., and Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM (JACM), 51(4):671–697, 2004.

[8] Karnin, Z. S. Verification based solution for structured mab problems. In Advances in Neural Information Processing Systems, pp. 145–153, 2016.

THANK YOU!

Email: duyh18@mails.tsinghua.edu.cn