

Multi-Precision Policy Enforced Training (MuPPET) A precision-switching strategy for quantised fixed-point training of CNNs

Aditya Rajagopal, Diederik Adriaan Vink Stylianos I. Venieris, Christos-Savvas Bouganis

intelligent Digital Systems Lab

Dept. of Electrical and Electronic Engineering

SAMSUNG AI Center

- Cambridge

www.imperial.ac.uk/idsl

Training of Convolutional Neural Networks (CNNs)

Typical Datasets

Typical Networks

• CIFAR10

- 10 categories
- 60000 images

• CIFAR100

- 100 categories
- 60000 images

ImageNet Dataset

- 1000 categories
- 1.2 million images

Architecture	# Parameters (million)	ILSVRC12 Top-1 Accuracy (%)
AlexNet ^[1]	60.0	59.3
GoogLeNet ^[2]	6.80	64.0
ResNet18 ^[3]	11.0	69.5
NASNet-A ^[4]	88.9	82.7
AmoebaNet-A ^[5]	469	83.9

Motivation

Training Time

- Enable wider experimentation with training e.g. Neural Architecture Search
- Increase productivity of deep learning practitioners

Power Consumption

- Reduce cost of training in large data centers
- Perform training on edge devices

Exploit low-precision hardware capabilities

- NVIDIA Turing Architecture (GPU)
- Microsoft Brainwave (FPGA)
- Google TPU (ASIC)

Goal

Perform quantised training of CNNs while maintaining FP32 accuracy and producing a model that performs inference at FP32

Contributions of this paper

- Generalisable policy that decides at run time appropriate points to increase the precision of the training process without impacting final test accuracy
 - Datasets: CIFAR10, CIFAR100, ImageNet
 - Networks: AlexNet, ResNet, GoogLeNet
 - Up to 1.84x training time improvement with negligible loss in accuracy
- Extending training to bit-widths as low as 8-bit to leverage the low-precision capabilities of modern processing systems
- Open source PyTorch implementation of the MuPPET framework with emulated quantised computations

Background: Mixed Precision Training

- **Current state-of-the-art:** Mixed-precision training (Micikevicius et al., 2018)
 - Maintains master copy of the weights at FP32
 - Quantises weights and activations to FP16 for all computations
 - Accumulates FP16 gradients into FP32 master copy of the weights
- Incurs accuracy drop if precision below
 FP16 is utilised

Multilevel optimisation formulation

Hierarchical formulation that progressively increases precision of computations

Proposed policy decides at **run time** the epochs at which these changes need to be made

Background: Gradient Diversity

• Yin et al. 2018 computes diversity between minibatches within an epoch

$$\Delta \mathcal{A}(\mathbf{w}) \geq \frac{\sum_{i=2}^{n} \left\| \nabla f_{i}(\mathbf{w}) \right\|_{2}^{2}}{\left\| \sum_{i=1}^{n} \nabla f_{i}(\mathbf{w}) \right\|_{2}^{2}} = \frac{\sum_{i=1}^{n} \left\| \nabla f_{i}(\mathbf{w}) \right\|_{2}^{2}}{\sum_{i=1}^{n} \left\| \nabla f_{i}(\mathbf{w}) \right\|_{2}^{2}} = \frac{\sum_{i=1}^{n} \left\| \nabla f_{i}(\mathbf{w}) \right\|_{2}^{2}}{\sum_{i=1}^{n} \left\| \nabla f_{i}(\mathbf{w}) \right\|_{2}^{2} + \sum_{i\neq j} \langle \nabla f_{i}(\mathbf{w}), \nabla f_{j}(\mathbf{w}) \rangle}$$

Modified for MuPPET to compute diversity between minibatches across epochs

Precision Switching Policy: Methodology

- Every reports:
 - The inter-epoch gradient diversity 4s oald usated culated
 - Given an epoch e when the precision switched from level qn11to qn, and current epoch ji

 $S(ij) = \{A_{S}(m)^{i} \forall e e \leq i \leq j\}$

$$p = \frac{maxS(j)}{\Delta_{s}(w)^{j}}$$

- Empirically chosen decaying threshold placed on p: $T = \alpha + \beta e^{-\lambda j}$
- If p wiolates T more than t integs, a precision switch is is by great and $S(j) = \emptyset$

Precision Switching Policy: Hypotheses

Intuition

- Low gradient diversity increases value of **p**
- The likelihood of observing r gradients across r epochs that have low diversity at early stages of training is low
- If this happens, may imply that information is being lost due to quantisation (high p value)

Generalisability

Generalisability across epochs
$$p = \frac{maxS(j)}{\Delta_{S}(w)^{j}}$$
 Generalisability across networks and datasets

Precision Switching Policy: Generalisability

- Similar values across various networks and datasets
- Decaying threshold accounts for **volatility** in early stages of training

Metric (p) and Threshold (y) over Training Epochs for GoogLeNet

Precision Switching Policy: Adaptability

• Is it better than randomly switching?

	Res	Net20	GoogLeNet		
	CIFAR-10	CIFAR-100	CIFAR-10	CIFAR-100	
ResNet20	65.01	65.80	-	65.0	
GoogLeNet	-	64.00	64.70	65.70	

Precision Switching Policy: Performance (Accuracy)

- Nets
 - AlexNet, ResNet18/20, GoogLeNet
- Datasets
 - CIFAR10, CIFAR100 (Hyperparameter Tuning), ImageNet (Application)
- Precisions
 - 8-, 12-, 14-, 16-bit **Dynamic Fixed**-Point (Emulated) and 32-bit **Floating**-Point
- Training with MuPPET matches accuracy of standard FP32 training when trained with identical SGD hyperparameters

	CIFAR-10		CIFAR-100		ImageNet				
	FP32	MuPPET	Diff (pp)	FP32	MuPPET	Diff (pp)	FP32	MuPPET	Diff (pp)
AlexNet	75.45	74.49	-0.96	39.20	38.19	-0.99	56.21	55.33	-0.88
ResNet	90.08	90.86	0.78	64.60	65.80	1.20	69.48	69.09	-0.39
GoogLeNet	89.23	89.47	0.24	62.90	65.70	2.80	59.15	63.70	4.55

Quantised Training

Quantisation

Quantised signed INT

 $X_{quant}^{\{weights,act\}} = I X^{\{weights,act\}} \delta$

Original value

Quantisation

Imperial College

London

Quantisation

Quantisation

Quantisation

Quantisation configuration

$$q_{q}^{i} \text{ and } < WL^{net}, s_{l}^{weights}, s_{l}^{act} >^{i} \quad \forall l \in \mathcal{L} \text{ and } q^{i} = \langle q_{l}^{i} | \forall l \in \mathcal{L} \rangle$$

Quantisation

Quantisation Emulation

- No ML framework support for reduced precision hardware
 - e.g. NVIDIA Turing architecture
- GEMM profiled using NVIDIA's CUTLASS Library
- Training profiled through PyTorch
 - Quantisation of weights, activations and gradients
 - All gradient diversity calculations
- 12- and 14-bit fixed profiled as 16-bit fixed point
 - Included for **future** custom precision hardware

Performance (Wall-clock time)

Current Implementation

	FP32	Mixed Prec	MuPPET	MuPPET
	(Baseline)	(Micikevicius et al., 2018)	(Current Impl.)	(Ideal)
AlexNet	30:13 (1×)	29.20 (1.03×)	23:52 (1.27×)	20:25 (1.48×)
ResNet18	132:46 (1×)	97:25 (1.36×)	100:19 (1.32×)	92:43 (1.43×)
GoogLeNet	152:28 (1×)	122:51 (1.24×)	122:13 (1.25×)	82:38 (1.84×)

Performance (Wall-clock time)

Ideal

	FP32	Mixed Prec	MuPPET	MuPPET
	(Baseline)	(Micikevicius et al., 2018)	(Current Impl.)	(Ideal)
AlexNet	30:13 (1×)	29.20 (1.03×)	23:52 (1.27×)	20:25 (1.48×)
ResNet18	132:46 (1×)	97:25 (1.36×)	100:19 (1.32×)	92:43 (1.43×)
GoogLeNet	152:28 (1×)	122:51 (1.24×)	122:13 (1.25×)	82:38 (1.84×)

