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Motivational Example
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Construct Space Observed Space

(𝑋! , 𝑌!) (𝑋, 𝑌)

Noisy Mapping

𝑋: Exam Score
𝑌: Data Label (0) or (1)
𝑍: Protected Attribute (Gender, Race, etc.)

𝑋!: True Ability
𝑌!: True Label

No trade-off between accuracy
and fairness

Bayes optimal classifier achieves 
fairness (Equal Opportunity)

Accuracy-fairness trade-off in observed space 
is due to noisier mappings for one group 
making the 0 and 1 labels “less separable”

Setup inspired from [Friedler et al. ’16] [Yeom et al. ’18]; Definition of Equal Opportunity [Hardt et al. ‘16]



Main Contributions
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Concept of Separability
Chernoff Information: approximation to 
best error exponent in binary classification

• Explain the trade-off (Theorem 1)

• Compute fundamental limits  
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Trade-off after Data Collection

Accuracy with respect to observed dataset is 
a problematic measure of performance
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Ideal Distributions 
where accuracy and fairness are in 
accord

• Proof of existence (Theorem 2)
With analytical forms

• Interpretation

Plausible distributions in observed space,
or distributions in the construct space

Alleviate Trade-off in Real World 
Gather knowledge from active data 
collection, often improving separability

• Criterion to alleviate (Theorem 3)

• Compute alleviated trade-off

These results also explain why 
active fairness works
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Exponent Analysis with
Geometric Interpretability



Preliminaries

• Probability of False Negative(FN): 𝑃"#,%! 𝜏& = Pr(𝑇& 𝑥 < 𝜏&|𝑌 = 1, 𝑍 = 𝑧)
Wrongful Reject of True (+), i.e.,  True Y=1

• Probability of False Positive(FP): 𝑃"',%! 𝜏& = Pr(𝑇& 𝑥 ≥ 𝜏&|𝑌 = 0, 𝑍 = 𝑧)
Wrongful Accept of True (−), i.e., True Y=0

• Probability of error: 𝑃(,% 𝜏 = 𝜋)𝑃"',% 𝜏 + 𝜋* 𝑃"#,% 𝜏
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Construct Space Observed Space

(𝑋! , 𝑌!) (𝑋, 𝑌)

Noisy Mapping

𝑌 = 𝑌!
𝑋 = 𝑓+,, 𝑋!

For group Z=0,
𝑋|+-),,-) ∼ 𝑃) 𝑥
𝑋|+-*,,-) ∼ 𝑃*(𝑥)

For group Z=1,
𝑋|+-),,-* ∼ 𝑄) 𝑥
𝑋|+-*,,-* ∼ 𝑄* (𝑥)

𝑇! 𝑥 = log
𝑃"(𝑥)
𝑃!(𝑥)

≥ 𝜏! 𝑇" 𝑥 = log
𝑄"(𝑥)
𝑄!(𝑥)

≥ 𝜏"

Prior probabilities (assume 𝜋) = 𝜋* = 1/2) 

EQUAL OPPORTUNITYà EQUAL Prob. of FN



Quick Background on Chernoff Error Exponents
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𝑃!",$! 𝜏% ≲ 𝑒&'"#,%!()!)

𝑃!+,$! 𝜏% ≲ 𝑒&'"&,%!()!)
Chernoff exponents of probabilities of FN and FP
(Larger exponent à lower error) 

Since 𝑃.,0 𝜏 = 1
2
𝑃34,0 𝜏 + 1

2
𝑃35,0 𝜏 , we define

the Chernoff exponent of overall error probability as
𝐸.,0! 𝜏6 = min{𝐸35,0! 𝜏6 , 𝐸34,0!(𝜏6)}

Lemma: Chernoff exponent of error probability for Bayes optimal classifier
between distributions 𝑃7(𝑥) under 𝑌 = 0 and 𝑃1(𝑥) under 𝑌 = 1:

Chernoff information 𝐶 𝑃7, 𝑃1 = − log min
8∈[7,1]

∑𝑃7 𝑥 8𝑃1 𝑥 1<8

(Larger exponent
à lower error
à higher accuracy)

[Cover & Thomas]



Our Proposition: Concept of Separability

• Definition of Separability: For a group of people with data 
distributions 𝑃7(𝑥) and 𝑃1(𝑥) under hypotheses 𝑌 = 0 and 𝑌 = 1, 
we define the separability as their Chernoff information 𝐶 𝑃7, 𝑃1 .
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Geometric interpretability makes them tractable
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Geometric understanding of the results
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Tangent w
ith
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pe 𝝉 𝟎

EFN EFP

𝐸#$,&! 𝜏! = sup
'(!

(𝑢𝜏! − Λ! 𝑢 )

For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

Λ! 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 0, 𝑍 = 0 =
9
2
𝑢(𝑢 − 1)

Λ" 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 1, 𝑍 = 0 =
9
2
𝑢(𝑢 + 1)
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𝑃! 𝑥 𝑃" 𝑥

𝐸#*,&! 𝜏! = sup
'+!

(𝑢𝜏! − Λ" 𝑢 )

𝑇) 𝑥 ≥ 𝜏)

𝐸,,&! 𝜏! = min{𝐸#*,&! 𝜏! , 𝐸#$,&!(𝜏!)}
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EFN EFP

𝐸#$,&! 𝜏! = sup
'(!

(𝑢𝜏! − Λ! 𝑢 )

For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

Λ! 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 0, 𝑍 = 0 =
9
2
𝑢(𝑢 − 1)

Λ" 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 1, 𝑍 = 0 =
9
2
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𝑃! 𝑥 𝑃" 𝑥

𝐸#*,&! 𝜏! = sup
'+!

(𝑢𝜏! − Λ" 𝑢 )

𝑇) 𝑥 ≥ 𝜏)
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𝐸,,&! 𝜏! = min{𝐸#*,&! 𝜏! , 𝐸#$,&!(𝜏!)}
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EFN EFP

𝐸#$,&! 𝜏! = sup
'(!

(𝑢𝜏! − Λ! 𝑢 )

For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

Λ! 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 0, 𝑍 = 0 =
9
2
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Λ" 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 1, 𝑍 = 0 =
9
2
𝑢(𝑢 + 1)

-5 0 5
0

0.2

0.4

𝜇 = 1 𝜇 = 4

𝑃! 𝑥 𝑃" 𝑥

𝐸#*,&! 𝜏! = sup
'+!

(𝑢𝜏! − Λ" 𝑢 )

𝑇) 𝑥 ≥ 𝜏)

lo
g-

ge
ne

ra
tin

g 
fu

nc
tio

n

u

𝐸35 = 𝐸34 = 𝐶(𝑃7, 𝑃1)

⇤0(u)⇤1(u)

𝐸,,&! 𝜏! = min{𝐸#*,&! 𝜏! , 𝐸#$,&!(𝜏!)}

C(P0, P1)
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EFN EFP

𝐸#$,&! 𝜏! = sup
'(!

(𝑢𝜏! − Λ! 𝑢 )

For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

Λ! 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 0, 𝑍 = 0 =
9
2
𝑢(𝑢 − 1)

Λ" 𝑢 = 𝐥𝐨𝐠 𝐄 𝑒'&! ) 𝑌 = 1, 𝑍 = 0 =
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𝐸,,&! 𝜏! = min{𝐸#*,&! 𝜏! , 𝐸#$,&!(𝜏!)}

C(P0, P1)



Accuracy-fairness trade-off is due to difference in 
separability of one group of people over another

Theorem 1 (informal): One of the following is true in observed space:

• Unbiased Mappings 𝐶 𝑃7, 𝑃1 = 𝐶 𝑄7, 𝑄1 : Bayes optimal classifiers for both 
groups also satisfy equal opportunity, i.e., 𝐸35,0" 𝜏7 = 𝐸35,0# 𝜏1 .

• Biased Mappings 𝐶 𝑃7, 𝑃1 < 𝐶 𝑄7, 𝑄1 : Given two classifiers (one for each 
group) that satisfy equal opportunity, for at least one of the groups it is not the 
Bayes optimal classifier, i.e.,
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Either 𝐸.,0" 𝜏7 < 𝐶(𝑃7, 𝑃1) or 𝐸.,0# 𝜏1 < 𝐶(𝑄7, 𝑄1) or both



Geometric understanding of the results
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For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

𝑇) 𝑥 ≥ 𝜏)

For group Z=1,
𝑄) 𝑥 ~𝑁 (0,1)
𝑄 𝑥 ~𝑁(4,1)

𝑇* 𝑥 ≥ 𝜏*
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For group Z=0,	we	have	𝐸#* = 𝐸#$ = 𝐶(𝑃!, 𝑃")

For group Z=1,	we	have	𝐸#* = 𝐸#$ = 𝐶(𝑄!, 𝑄")

Bayes optimal classifiers do not satisfy
Equal Opportunity (unequal 𝐸67)



Geometric understanding of the results

Avoid active harm to privileged group?
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For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

𝑇) 𝑥 ≥ 𝜏)

For group Z=1,
𝑄) 𝑥 ~𝑁 (0,1)
𝑄 𝑥 ~𝑁(4,1)

𝑇* 𝑥 ≥ 𝜏*
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𝐸67,%" 𝜏) = 𝐸67,%#(𝜏*) Equal Opportunity (equal 𝐸67) satisfied but 
sub-optimal for privileged group Z=1



Geometric understanding of the results
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For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

𝑇) 𝑥 ≥ 𝜏)

For group Z=1,
𝑄) 𝑥 ~𝑁 (0,1)
𝑄 𝑥 ~𝑁(4,1)

𝑇* 𝑥 ≥ 𝜏*
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𝐸67,%" 𝜏) = 𝐸67,%#(𝜏*)
Equal Opportunity (equal 𝐸67) satisfied but 

sub-optimal for unprivileged group Z=0

For at least one of the groups, accuracy on given data is compromised for fairness.



Ideal distributions where accuracy and fairness are 
in accord

Theorem 2 (informal): Fix Bayes optimal classifier for privileged group Z=1. 
Then, for group Z=0, there exists ideal distributions of the forms

and
such that:
• Fairness on given data: The Bayes optimal classifier for the new distributions 

is fair on given data (in fact it is the same classifier 𝑇7∗ 𝑥 ≥ 𝜏7∗ that was sub-
optimal but fair on the given data).
• Fairness and Optimal Accuracy on ideal data: On the ideal data, this Bayes 

optimal classifier also has 𝐸ab=  𝐶 >𝑃7, >𝑃1 = 𝐶(𝑄7, 𝑄1).
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Proof of existence of ideal distributions (with analytical forms)



How to go about finding such ideal distributions?
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where \𝑇) 𝑥 = log
8'#(:)
8'"(:)

≥ 0 is the Bayes optimal classifier for the ideal distributions.



How to interpret these ideal distributions?
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Construct Space Observed Space

(𝑋! , 𝑌!) (𝑋, 𝑌)

Biased Noisy Mapping

𝑌 = 𝑌!
𝑋 = 𝑓+,,* 𝑋!

( ]𝑋, ]𝑌)

Unbiased Mapping]𝑌 = 𝑌!
]𝑋 = 𝑓+,,< 𝑋!

Plausible distributions in observed space under unbiased mappings, or 
candidate distributions in the construct space under identity mappings

For group Z=0,
]𝑋|+-),,-) ∼ \𝑃) 𝑥
]𝑋|+-*,,-) ∼ \𝑃* (𝑥)

For group Z=1,
]𝑋|+-),,-* ∼ 𝑄) 𝑥
]𝑋|+-*,,-* ∼ 𝑄* (𝑥)



When does active data collection alleviate the accuracy-
fairness trade-off in the real world?

𝑋′ : New feature collected for Z=0

Theorem 3: The separability 𝐶(𝑊7,𝑊1) is strictly greater than 𝐶(𝑃7, 𝑃1) if and 
only if the conditional mutual information 𝐼(𝑋′; 𝑌|𝑋, 𝑍 = 0) > 0. 
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𝑋, 𝑋′|+-*,,-)~𝑊*(𝑥, 𝑥=)𝑋, 𝑋′|+-),,-)~𝑊)(𝑥, 𝑥=)

Improving separability alleviates the accuracy-fairness trade-off in the real world
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𝜏 $
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|𝐸%&,#! 𝜏$ − 𝐸%&,#" 𝜏' |

For group Z=0,
𝑃) 𝑥 ~𝑁 (1,1)
𝑃* 𝑥 ~𝑁(4,1)

For group Z=0,
𝑊) 𝑥, 𝑥′ ~𝑁 ((1,1),𝐈𝟐𝐱𝟐)
𝑊* 𝑥, 𝑥′ ~𝑁((4,2), 𝐈𝟐𝐱𝟐)

Numerical example: Exact computation of the trade-off

20



Summary
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• Provides new tools that go beyond explaining accuracy-fairness trade-off
• Geometric interpretability helps exact quantification of this trade-off
• Separability, ideal distributions and their connection to construct space
• Criterion to alleviate the trade-off explains success of active fairness

Thank You!


