Efficient Policy Learning from Surrogate-Loss Classifications

Andrew Bennett (Cornell Tech)

Joint work with Nathan Kallus (Cornell Tech)

Introduction

Surrogate-Loss Reduction

Efficient Policy Learning Theory

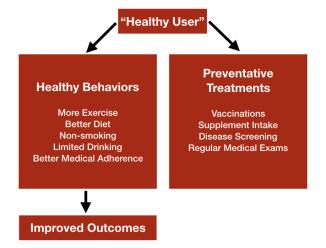
ESPRM Algorithm

Offline Policy Learning Problem

Child Weight	Infant Drops (50 mg / 1.25 ml)	Children's Suspension (100 mg / 5 ml)	Jr. Strength Tablets (100 mg)	Adult Tablets
12 – 17 lbs. (6 mos. & older)	1.25 ml	½ teaspoon (2.5 ml)	—	_
18 – 23 lbs.	1.875 ml	¾ teaspoon (3.75 ml)	_	_
24 – 35 lbs.	2.5 ml	1 teaspoon (5 ml)	1 tablet	_
36 – 47 lbs.	_	1 ½ teaspoon (7.5 ml)	1 ½ tablets	-
48 – 59 lbs.	_	2 teaspoon (10 ml)	2 tablets	1 tablet

Important problem since experimenting with treatments may be unethetical, costly, or impossible!

Offline Policy Learning Problem



Problem is non-trivial since data may be confounded!

- Although there is work on efficient policy evaluation, we show that performing policy optimization using an efficiently estimated objective **does not** lead to efficient learning of optimal policy parameters.
- We present a novel algorithm for efficiently learning optimal policy parameters, and show that it leads to improved regret.

Introduction

Surrogate-Loss Reduction

Efficient Policy Learning Theory

ESPRM Algorithm

Experiments

Policy Learning Formalization

- Notation:
 - X: Individual covariates
 - T: Binary treatment decision (-1 or 1)
 - Y: Observed outcome given actual treatment T
 - Y(t): **(unobserved)** Potential outcome that would have occurred under treatment t, for $t \in \{-1, 1\}$
- Policy: $\pi(x)$ denotes treatment decision given X = x.
- Assume iid data $((X_1, T_1, Y_1), \dots, (X_n, T_n, Y_n)).$
- **Goal:** Find a policy π that maximizes $\mathbb{E}[Y(\pi(X))]$.
- Assume that Y = Y(T), and that logging policy was a function of X only (no hidden confounding)

Policy Learning Objective

• Let
$$J(\pi) = \mathbb{E}[Y(\pi(X))] - \frac{1}{2}[Y(+1) - Y(-1)]$$

• Can easily show that $J(\pi) = \mathbb{E}[\psi \pi(X)]$ for a range of ψ such as

•
$$\psi_{\text{IPS}} = \frac{TY}{P(T|X)}$$

• $\psi_{\text{DM}} = \mathbb{E}[Y \mid X, T = 1] - \mathbb{E}[Y \mid X, T = -1]$
• $\psi_{\text{DR}} = \psi_{DM} + \psi_{IPS} - \frac{T\mathbb{E}[Y|X,T]}{P(T|X)}$

- This suggests approximating the above objective by $J_n(\pi) = \frac{1}{n} \sum_{i=1}^n \hat{\psi}_i \pi(X_i)$, where $\hat{\psi}_i$ are estimated as above.
- Reduction to Empirical Risk Minimization!

• $J_n(\pi) = \frac{1}{n} \sum_{i=1}^n \hat{\psi}_i \pi(X_i)$ is a non-convex objective.

- As in (weighted) binary classification, we can make the problem tractable by replacing this 0/1 loss with a convex surrogate.
- Consider parametric class of functions g_{θ} for $\theta \in \Theta$, and let $\pi_{\theta}(x) = \operatorname{sign}(g_{\theta}(x))$ denote parametric policy class.
- Surrogate-loss objective is

$$L_n(\theta) = \frac{1}{n} \sum_{i=1}^n |\hat{\psi}_i| I(g_{\theta}(X_i), \operatorname{sign}(\hat{\psi}_i)),$$

for some convex loss function I

- There is a rich past literature that considers efficiently estimating the cost function to be optimized, based on the above approaches.
- However, none of this work addresses whether the optimal policy parameters themselves are efficiently estimated!

Introduction

Efficient Policy Learning Theory

ESPRM Algorithm

Experiments

Assumptions for Surrogate-Loss Reduction

1. Valid Weighting Function:

$$\mathbb{E}[\psi \mid X] = \mathbb{E}[Y(+1) - Y(-1) \mid X]$$

 ${\, \bullet \,}$ This holds for the IS, DM, and DR ψ functions.

2. Regularity:

$$\mathbb{E}[|\psi|] < \infty$$

3. Correct Specification:

$$\{g_{\theta}: \theta \in \Theta\} \cap \left(\arg\min_{g \text{ unconstrained}} \mathbb{E}[|\psi| I(g(X), \operatorname{sign}(\psi))] \right) \neq \varnothing$$

• This assumption means there is a policy in our parametric class that minimizes the population surrogate loss.

Lemma

Assuming correct specification, and using logistic regression loss, the implied model is given by all distributions on (X, T, Y) for which there exists $\theta^* \in \Theta$ satisfying

$$rac{P(\psi > 0 \mid X)}{\mathbb{E}\left[|\psi| \mid X
ight]} = \sigma(g_{ heta^*}(X)) \;\; ext{ almost surely}.$$

- ${\, \bullet \, \sigma \,}$ denotes the logistic function.
- This model is in general *semiparametric*, because the set of distributions on (X, T, Y) that satisfy this constraint is infinite-dimensional.

Efficient Learning Implies Optimal Regret

• Recall that J is true objective, and L is surrogate loss objective. Define:

$$\begin{split} & \operatorname{\mathsf{Regret}}_J(\theta) = \operatornamewithlimits{\arg\max}_{\pi \; \text{unconstrained}} J(\pi) - J(\theta) \\ & \operatorname{\mathsf{Regret}}_L(\theta) = L(\theta) - \operatornamewithlimits{\inf}_{\theta \in \Theta} L(\theta) \,, \end{split}$$

• and let $AR_L(\hat{\theta}_n)$ be the distribution limit of $n\text{Regret}_L(\hat{\theta}_n)$.

Theorem

Under our assumptions, we have $\operatorname{Regret}_{J}(\theta) \leq \operatorname{Regret}_{L}(\theta)$. Furthermore, if $\hat{\theta}_{n}$ is a semiparametrically efficient then $\mathbb{E}[\phi(AR_{L}(\hat{\theta}_{n}))]$ is minimized for any non-decreasing ϕ .

Introduction

- Surrogate-Loss Reduction
- Efficient Policy Learning Theory

ESPRM Algorithm

Experiments

Theorem

Define

$$m(X;\theta) = \mathbb{E}[|\psi|l'(g_{\theta}(X), \operatorname{sign}(\psi)) \mid X].$$

Then under our assumptions the policy given by θ^* is optimal if and only if $m(X; \theta^*) = 0$ almost surely.

- This is equivalent to $\mathbb{E}[f(X)|\psi|l'(g_{\theta}(g_{\theta}(X), \operatorname{sign}(\psi))] = 0$ for every square integrable function f.
- There exists an extensive literature on solving these kinds of problems efficiently!

ESPRM Algorithm

- We extend an existing algorithm that was previously designed for efficiently solving instrumental variable regression.
- Define:

$$u(X,\psi;\theta,f) = f(X)|\psi|l'(g_{\theta}(X),\operatorname{sign}(\psi))$$
$$U_n(\theta,f;\tilde{\theta}) = \frac{1}{n}\sum_{i=1}^n u(X_i,\hat{\psi}_i;\theta,f) - \frac{1}{4n}\sum_{i=1}^n u(X_i,\hat{\psi}_i;\tilde{\theta},f)^2$$

Given some flexible function class *F*, and prior policy estimate *θ*, our *efficient surrogate policy risk minimization* (ESPRM) estimator is given by:

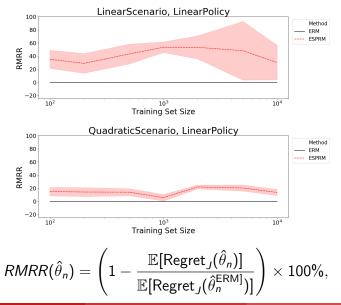
$$\hat{\theta}^{\mathsf{ESPRM}} = rgmin_{ heta \in \Theta} \min_{f \in \mathcal{F}} \sup U_n(heta, f; \widetilde{ heta})$$

Introduction

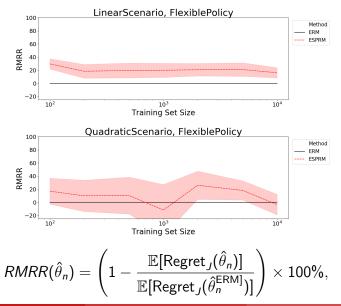
- Surrogate-Loss Reduction
- Efficient Policy Learning Theory
- ESPRM Algorithm

- We compare our ESPRM method against empirical risk minimization (ERM) using the logistic regression surrogate loss.
- We test the following policy classes:
 - LINEARPOLICY: $g_{\theta}(x) = \theta^t x$
 - FLEXIBLEPOLICY: g_{θ} parametrized by neural network
- We test on the following kinds of synthetic scenarios:
 - LINEAR: Optimal policy is linear
 - QUADRATIC: Optimal policy is quadratic
- In all cases we compare algorithms over a large number of randomly generated synthetic scenarios of the given kind.

Experimental Results - Linear Policy Class



Experimental Results – Flexible Policy Class



- We consider a case study based on different programs assigned to unemployed individuals in France.
- Individuals were randomly assigned to either an intensive counseling program by a private agency, or a similar program by a public agency.
- We also have access to individual covariates and outcomes (based on whether they re-entered work force within six months, minus treatment cost).

Jobs Case Study

- We divide the experimental data into train and test splits, and introduce selection bias by randomly dropping training units based on covariates.
- We learn treatment assignment policies using ESPRM and ERM on the artificially confounded training data.
- Learnt policies are evaluated on the test data using a Horvitz-Thompson estimator.
- Estimated policy values:

Policy Class	ERM	ESPRM	Difference
Linear	-0.96 ± 4.32	4.42 ± 3.78	5.38 ± 5.06
Flexible	-1.75 ± 4.64	7.68 ± 3.16	9.42 ± 5.17

- Although there is work on efficient policy evaluation, policy learning using an efficiently estimated objective **does not** lead to efficient learning of optimal policy parameters.
- We presented an algorithm for policy learning based on theory of conditional moment problems that is efficient.
- We showed both theoretically and empirically that efficient optimal policy estimation implies improved regret.

Thank you for listening, and please check our our full paper "Efficient Policy Learning from Surrogate-Loss Classification Reductions"!