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‣ Drug discovery: finding molecules with desired chemical properties 
‣ A good drug needs to satisfy multiple objectives
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‣ Drug discovery: finding molecules with desired chemical properties 
‣ A good drug needs to satisfy multiple objectives

Drug Discovery

‣ Multi-property optimization is challenging! 
- Many examples of molecules with a single property  
- Few instances of molecules that satisfy multiple 

property constraints 
- Challenge: How do we find compounds that 

satisfy all the criteria with few (or zero) examples 
of such molecules?
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‣ De novo drug design using generative models 
‣ The model learns to generate new drugs that satisfy all the property constraints 
‣ Example: Design dual inhibitor (GSK3  + JNK3) to treat Alzheimers disease 
‣ Maximize the reward using RL: reward(x) = GSK3 (x) + JNK3(x)
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‣ De novo drug design using generative models 
‣ The model learns to generate new drugs that satisfy all the property constraints 
‣ Example: Design dual inhibitor (GSK3  + JNK3) to treat Alzheimers disease 
‣ Maximize the reward using RL: reward(x) = GSK3 (x) + JNK3(x)
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‣ Challenge: reward sparsity 

- We tested REINVENT (Olivecrona et al.), a 
state-of-the-art RL method for drug design 

- The more property constraints, the harder 
for RL to get positive rewards

Olivecrona et al., “Molecular de-novo design through deep reinforcement learning”, 
Journal of Cheminformatics (2017)



‣ Molecules are often generated via an autoregressive process: 
- In each step, the model adds one atom to the molecule 
- Reward are evaluated at the very end 
- Requires a lot of steps to complete a molecule!

Challenge: Sparsity of Rewards
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‣ Maximize the reward using RL: reward(x) = GSK3 (x) + JNK3(x) 
‣ Learn property-specific rationales — subgraphs active to GSK3  or JNK3 

individually. 
‣ Rationales play similar roles to options in hierarchical RL (Sutton et al., 1999)
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‣ Maximize the reward using RL: reward(x) = GSK3 (x) + JNK3(x) 
‣ Learn property-specific rationales — subgraphs active to GSK3  or JNK3 

individually. 
‣ Rationales provide faster feedbacks and alleviate reward sparsity issue

β
β

Hierarchical Reinforcement Learning

Sutton et al., Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2): 181–211, 1999. 
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Model Components
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Property Predictors

‣ To quickly evaluate the property of generated compounds, we train a property 
predictor over reference drugs with measured properties. 

‣ This strategy is commonly adopted for drug de novo design (Olivecrona et al., 
2017; Popova et al., 2018) 

‣ The property predictor is fixed when training the generative model.

Property predictor

Popova et al., "Deep reinforcement learning for de novo drug design." Science advances (2018)

Reference drugs



Model Components
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Rationale Extraction

‣ In most cases, rationales are not provided to our models 
‣ How to discover such rationales without direct supervision?
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Rationale Extraction via Model Interpretation

‣ Our goal: given a molecule G, find a minimal subgraph S such that S retains 
desired property scores 

‣ Extract rationales from active molecules in the training set
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Rationale Extraction via Model Interpretation

‣ Our goal: given a molecule G, find a minimal subgraph S such that S retains 
desired property scores 
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Find Rationales by Monte Carlo Tree Search

‣ Our goal: given a molecule G, find a 
minimal subgraph S such that S retains 
desired property scores 

‣ How to solve this? 
- Iteratively remove peripheral bonds and 

rings to find subgraph S 
- Evaluate each subgraph using the (fixed) 

property predictor  
- Q and U functions are MCTS parameters that 

guides the search process 
- MCTS is much faster than exhaustive search.
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Find Rationales by Monte Carlo Tree Search

‣ Our goal: given a molecule G, find a 
minimal subgraph S such that S retains 
desired property scores 

‣ How to solve this? 
- Iteratively remove peripheral bonds and 
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Molecule Completion

‣ Rationales are “partial” molecules 
‣ We need to complete them into a full molecule 

- Rationales from different properties are disconnected. 
‣ Learn a molecule completion model  to connect the rationales.P(G |S)
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Molecule Completion

‣ We model  as an autoregressive process 
‣ For simplicity, we use a simple atom-by-atom molecule completion model 

- More advanced architectures are certainly beneficial 
‣ In each step, we add an atom to the current molecule, and predict its 

associated bonds
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Molecule Completion

‣ We model  as an autoregressive process 
‣ For simplicity, we use a simple atom-by-atom molecule completion model 

- More advanced architectures are certainly beneficial 
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Pre-training Molecule Completion

‣ Molecule completion model can be trained without “property” predictors 
‣ Pre-train molecule completion on a large set of unlabeled molecules (e.g., ChEMBL)
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Pre-training Molecule Completion

‣ Molecule completion model can be trained without “property” predictors 
‣ Pre-train molecule completion on a large set of unlabeled molecules (e.g., ChEMBL)
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Experiments

‣ Three evaluation metrics 
- we do not explicitly train the model to optimize these metrics, except success rate

‣ Success rate:  
- How often do generated molecules satisfy all the property constraints? 
- Following Olivecrona et al., we use property predictors to compute this metric

‣ Diversity: 
- Average pairwise molecular distance: ∑X,Y

dist(X, Y )

‣ Novelty: 
- We don’t want to rediscover existing drugs known to satisfy all the constraints. 
- A molecule G is novel if , where  is its nearest neighbor in the 

training set (i.e., not similar to any of the drugs)
dist(G, GNN) > 0.6 GNN



Single Constraint: JNK3 Inhibitor Design

‣ We compare with two state-of-the-art RL methods 
- GCPN (You et al., 2018) 
- REINVENT (Olivecrona et al., 2017) 

‣ Our model achieves the best success rate and novelty score
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Two Constraints: GSK3/JNK3 Dual Inhibitor

‣ Jointly inhibiting JNK3 and GSK3  can be beneficial for treating Alzheimers 
disease [1] 

‣ Property predictors are trained over the dataset from Li et al., 2018 [1] 
‣ Our model achieves the best result across all the three metrics.

β

[1] Li et al., Multi-objective de novo drug design with conditional graph generative model. Journal of Cheminformatics, 2018. 
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Four Constraints: GSK3 + JNK3 + QED + SA
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‣ Jointly inhibiting JNK3 and GSK3  can be beneficial for treating Alzheimers 
‣ We further require generated dual inhibitors to be drug like (QED > 0.6) and 

synthetically accessible (SA < 4.0) 
‣ Our model significantly outperforms REINVENT (esp. success rate)
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Are the rationales chemically meaningful?

‣ The extracted rationales should accurately explain the property of interest
‣ As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity 

dataset to evaluate rationale extraction module.
‣ We construct a toxicity dataset where a molecule is labeled as toxic if it contains 

structural alerts (Sushko et al., 2012)
‣ We train a graph convolutional network and use MCTS to extract rationales
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Are the rationales chemically meaningful?

‣ The extracted rationales should accurately explain the property of interest
‣ As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity 

dataset to evaluate rationale extraction module.
‣ We construct a toxicity dataset where a molecule is labeled as toxic if it contains 

structural alerts (Sushko et al., 2012)
‣ We train a graph convolutional network and use MCTS to extract rationales
‣ The extracted rationales should match the structural alerts
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Are the rationales chemically meaningful?

‣ The extracted rationales should accurately explain the property of interest 
‣ As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity 

dataset to evaluate rationale extraction module. 
‣ We construct a toxicity dataset where a molecule is labeled as toxic if it contains 

structural alerts (Sushko et al., 2012) 
‣ We train a graph convolutional network and use MCTS to extract rationales 
‣ The extracted rationales should match the structural alerts



Are the property predictors reliable?

‣ We use a property predictor to evaluate the generated compounds.  
‣ However, generated compounds can be far away from the drugs used to train 

the property predictor — predicted properties may not be reliable!

Reference drugs

Generated
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Rationale encourage reliability

‣ We use a property predictor to evaluate the property of generated compounds  
‣ However, generated compounds can be far away from the drugs used to train 

the property predictor — that’s why rationales are useful! 
‣ Molecules generated from rationales are closer to reference drugs
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Rationale encourage reliability

‣ We use a property predictor to evaluate the property of generated compounds  
‣ However, generated compounds can be far away from the drugs used to train 

the property predictor — that’s why rationales are useful! 
‣ Molecules generated from rationales are closer to reference drugs
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Summary
‣ Molecular graph generation is particularly challenging due to multiple constraints 

‣ In this paper, we propose hierarchical RL based on rationales 

‣ Our model works better than previous state-of-the-art RL methods 

‣ Methods can be further enhanced using advanced generative architectures 
- Instead of atom-by-atom generation, we can generate molecules based on substructures 
- Jin et al., Hierarchical Generation of Molecular Graph using Structural Motifs. ICML 2020 
- (poster ID 2743)


