

Hierarchical Generation of Molecular Graphs using Structural Motifs

Wengong Jin, Regina Barzilay, Tommi Jaakkola MIT CSAIL

Drug Discovery via Generative Models

- Drug discovery: finding molecules with desired chemical properties The primary challenge: large search space

Criterion:

- Safe
- Cures COVID

Search

Potential candidates

Remdesivir?

Drug Discovery via Generative Models

- Generative models can be used to efficiently search in the chemical space
- Given a specified criterion, the model generates a molecule with desired properties.

Criterion:

- Safe
- Cures COVID

Condition

Molecular Graph Generation

- Consider connected graphs...
- Different type of graphs require different generation method.
- What kind of generation method is suitable for molecules?

rent generation method. <u>uitable for molecules?</u>

Previous Methods for Molecule Generation

GraphRNN (You et al. 2018), and more

Atom based

Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),

Previous Methods for Molecule Generation

- Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), GraphRNN (You et al. 2018), and more
- Substructure based methods: JT-VAE (Jin et al., 2018)
 - Incorporating inductive bias (i.e., low tree-width) into generation
 - Each time generate a cycle or edge

Atom based

Substructure based

Previous methods: limitation

- Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), GraphRNN (You et al. 2018), and more
- Substructure based methods: JT-VAE (Jin et al., 2018)

JT-VAE • CG-VAE O

Previous methods: limitation

- Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), GraphRNN (You et al. 2018), and more
- Substructure based methods: JT-VAE (Jin et al., 2018)

JT-VAE CG-VAE ••

Large molecules (e.g., peptides, polymers)

Failure in Generating Large Molecules

GraphRNN (You et al. 2018), and more

Many Generation Steps: Vanishing gradient + error accumulation

Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),

CG-VAE 70 atom predictions + 70 bond predictions

Failure in Generating Large Molecules

- Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), GraphRNN (You et al. 2018), and more
- Substructure based methods: JT-VAE (Jin et al., 2018)

 JT-VAE decoder requires each substructure neighborhood to be assembled in one go, making it combinatorially challenging to handle large substructures.

Larger Building Blocks: Motifs

- JT-VAE only considered single rings and bonds as building blocks How about using larger building blocks — motifs with flexible structures, not
- restricted to rings and bonds?
- Large molecules such as polymers exhibit clear hierarchical structure, being built from repeated structural motifs.

 Only 11 steps to generate this polymer structure.

NLP Analogy

- Atom-based generation == character-based generation Substructure-based generation == word-based generation
- Motif-based generation == phrase-based generation

- Substructures
- (ring and bond only)
- Word-based generation

- Motifs
- (structures can be flexible)
- Phrase-based generation

Our New Architecture: HierVAE

Generates molecules motif by motif

- Faster and more efficient
- Much higher reconstruction accuracy for large molecules

Reconstruction Accuracy w.r.t. Molecule Size

Motif (Ours) • Substructure • • Atom

Our New Architecture: HierVAE

Motif extraction from data

- Motif extraction is based on heuristics

Hierarchical Graph Encoder

- Representing molecules at both motif and atom level.
- Designed to match the decoding process

Hierarchical Graph Decoder

- Each generation step needs to resolve:
 - 1. What's the next motif?
- 2. How it should be attached to current graph?

- Later I will discuss how motifs can be learned (based on given properties).

A molecule is decomposed into disconnected motifs as follows: 1. Find all the bridge bonds (u, v) such that either u or v is part of a ring.

- A molecule is decomposed into disconnected motifs as follows:
- 1. Find all the bridge bonds (u, v) such that either u or v is part of a ring. 2. Detach all bridge bonds from its neighbors.

- A molecule is decomposed into disconnected components as follows:
- 1. Find all the bridge bonds (u, v) such that either u or v is part of a ring. 2. Detach all bridge bonds from its neighbors.
- 3. Select all components as motifs if it occurs frequently in the training set.

- A molecule is decomposed into disconnected components as follows:
- 1. Find all the bridge bonds (u, v) such that either u or v is part of a ring. 2. Detach all bridge bonds from its neighbors.
- 3. Select all components as motifs if it occurs frequently in the training set. 4. If a component is not selected, further decompose it into basic rings and
- bonds.

Mark attaching points

- Motif decomposition loses atom-level connectivity information

For ease of reconstruction, we propose to mark attaching points in each motif.

• We can construct a motif vocabulary given a training set (usually <500)

- - Usually less than 10 because motifs have regular attachment patterns.
 - The attachment vocabulary covers >97% of the molecules in test set.

Motif Vocabulary

Each motif also has a vocabulary of possible attaching point configurations.

During generation, we maintain all possible positions to which new motifs will be attached

Step 1: Motif Prediction

Generation Process

Step 2: Attachment Prediction

Generation Process

Step 3: Graph Prediction

- JT-VAE assembles each neighborhood (multiple motifs) in one go.
- HierVAE decomposes the assembly process into multiple "baby steps"
 - First predict attaching points, then matching atoms.
 - Assembles one motif at a time, not the entire neighborhood.

d (multiple motifs) <u>in one go</u>. rocess into multiple "baby steps" ning atoms. ntire neighborhood.

 Atom layer serves graph prediction (step 3)

 Atom layer serves graph prediction (step 3)

Motif layer designed for motif prediction (step 1)

 Attachment layer is designed for attachment prediction (step 2)

 Atom layer is designed for graph prediction (step 3)

Run motif layer message passing network

Propagate messages to corresponding nodes

 Run attachment layer message passing network

Propagate messages to corresponding nodes

 Run atom layer message passing network

Hierarchical Graph Decoder (top down)

- Motif Prediction
 - Classification: predict the right motif in the vocabulary

Hierarchical Graph Decoder (top down)

- Motif Prediction
 - Classification: predict the right motif in the vocabulary
- Attachment Prediction
 - Classification: predict the right attachment in the vocabulary

Hierarchical Graph Decoder (top down)

- Motif Prediction
 - Classification: predict the right motif in the vocabulary
- Attachment Prediction
 - Classification: predict the right attachment in the vocabulary
- Graph Prediction:
 - Classification: predict the corresponding matching atoms

Experiment 1: Polymer Generation

Dataset [1]: 86K polymers (76K training, 5K validation, 5K testing) **Evaluation Metrics:** Sample 5000 molecules from models

- Reconstruction accuracy
- Validity
- Uniqueness
- Diversity
- Property statistics: Frechet distance between property distributions of molecules in the generated set and test set (logP, QED, SA, molecular weight).
- Structural statistics:
 - Nearest neighbor similarity (SNN)
 - Fragment similarity (Frag)
 - Scaffold similarity (Scaf)

^[1] St. John et al., "Message-passing neural networks for high-throughput polymer screening." The Journal of chemical physics, 150 (23):234111, 2019

Experiment 1: Polymer Generation

Method	Reconstruction / Sample Quality (†)				Property Statistics (\downarrow)				Structural Statistics (†)		
	Recon.	Valid	Unique	Div.	logP	SA	QED	MW	SNN	Frag.	Scaf.
Real data	-	100%	100%	0.823	0.094	6.7e-5	1.7e-5	82.3	0.706	0.995	0.462
SMILES	21.5%	93.1%	97.3%	0.821	1.471	0.011	5.4e-4	4963	0.704	0.981	0.385
CG-VAE	42.4%	100%	96.2%	0.879	3.958	2.600	0.0030	3944	0.204	0.372	0.001
JT-VAE	58.5%	100%	94.1%	0.864	2.645	0.157	0.0075	10867	0.522	0.925	0.297
HierVAE	79.9%	100%	97.0%	0.817	0.525	0.007	5.7e-4	1928	0.708	0.984	0.390

Experiment 1: Polymer Generation

Training speed (mol/sec)

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019

Experiment 2: Lead optimization

Source Molecule (QED=0.784)

QED=0.924

Experiment 2: Lead optimization

- Similar but ...
- Better drug-likeness

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019

Source Molecule (QED=0.784)

QED=0.924

Experiment 2: Lead optimization

- Similar but ...
- Better drug-likeness

- Similar but ...
- Better solubility

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019

Source Molecule (QED=0.784)

QED=0.924

<u>Need to learn a molecule-to-molecule mapping (i.e., graph-to-graph)</u>

Experiment 2: Lead optimization

- Similar but ...
- Better drug-likeness

- Similar but ...
- Better solubility

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019

Lead optimization as Graph Translation

design specifications (first introduced in Jin et al., 2019)

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019

Lead optimization as Graph Translation

design specifications (first introduced in Jin et al., 2019)

The training set consists of (source, target) molecular pairs, e.g.,

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019

Lead optimization as Graph Translation

design specifications

The training set consists of (source, target) molecular pairs, e.g.,

Easy to modify HierVAE into a translation model (just add attention layers)

Single property optimization: DRD2 success % (from inactive to active)

• We use a property predictor [1] to evaluate DRD2 activity of generated compounds

DRD2 Optimization

^[1] Olivecrona et al., Molecular de-novo design through deep reinforcement learning, J. Chem. Inf. Model. 2017

Single property optimization: drug-likeness (QED) success %

QED(X) < 0.8QED(Y) > 0.9

QED is computed by RDKit

QED Optimization

Summary

- Molecular graph generation is an important problem for ML and drug discovery
- In this paper, we proposed HierVAE to generate molecules motif by motif.
- HierVAE works better than previous methods, both in large molecules (polymers) as well as small molecules (graph translation).
- Since motifs structures are flexible, how should we construct a good motif vocabulary?

 - Jin et al., Multi-objective molecule generation using interpretable substructures. ICML 2020 - Use interpretability techniques to construct a motif vocabulary relevant for downstream task (poster ID 2748)

