Incremental Sampling Without
Replacement for Sequence Models

Kensen Shi, David Bieber, Charles Sutton
(Google Research)

Example Motivation

Program synthesis: generate a program that satisfies a given specification

Program Specification

neural .
J gO egalfjﬂples N roaram candidate
rain
e Symbolic constraints prog program
e Natural language generator

e Pseudocode

T

Sample candidate programs from the neural generator conditioned on the spec
e Incrementally: stopping as soon as a satisfactory program is found
e Without replacement: duplicate candidate programs are not useful

satisfactory
solution

Motivation, More Generally

Neural search in a discrete output space for a solution that satisfies constraints

Sample candidate solutions from the neural generator conditioned on the spec

Incrementally: stopping as soon as a satisfactory solution is found

Without replacement: duplicate candidate solutions are not useful

Examples of search problems:

Program synthesis

Traveling Salesman Problem: find a tour with cost at most X

Other combinatorial optimization problems

SAT and SMT: find assignments to variables to satisfy all constraints

Benefits of Incremental Sampling

Incremental sampling enables more flexibility in stopping conditions.

With incremental sampling, one can draw distinct samples until...
... a satisfactory solution is found

... a time limit has passed

... enough variety is obtained

... an estimate has converged

... a target fraction of the search space is explored

... any arbitrary stopping criterion is met

Contrast with beam search...

Existing methods of drawing samples

Beam search and variants
e Produces a batch of distinct outputs
e Notincremental
o One does not know upfront how large a batch should be
o If one batch is insufficient, the next batch may have duplicates

Naive Monte Carlo I.I.D. sampling
e Thisis sampling with replacement since samples are independent

Rejection sampling
e Like Monte Carlo I.I.D. sampling, but duplicate samples are discarded
e Potentially inefficient if the output distribution is very peaked, as one would
expect from a well trained neural model

Our Contributions

e Approaching the sampling problem by manipulating the random choices
made by the program that generates the samples
e UnigueRandomizer, a data structure for sampling distinct outputs of a
randomized program
o Incremental
o Samples without replacement
o Time and memory efficient
o Can be extended to support batching

e Describing discrete randomized programs, the broad class of programs that
UniqueRandomizer can sample from

e A statistical estimator that applies to samples drawn without replacement
o See paper for details

What can we sample from?

Discrete randomized programs:

All randomness comes from a choice
function that chooses a random index
given a discrete probability distribution
Cannot draw random floats

o But, uniform(@, 1) < @.3 can be written

as choice_fn([0.3, 0.7]) ==

Can accept inputs, e.g., a trained model
and problem instance
Can use control flow including
conditionals, loops, and recursion
This broad class of programs includes
sequence models!

def draw_sample(model, h,
choice_fn):
tokens = []
token = BOS
for i in range(MAX_LEN):
probs, h = model(token, h)
token = choice_fn(probs)
tokens.append(token)
if token == EOS:
break
return tokens

A simple randomized program that
draws a sample from a recurrent
sequence model. It uses choice_fn to
make random decisions.

UnigueRandomizer: Overview

UniqueRandomizer is our solution to
incremental sampling without replacement
e Maintains a trie of unsampled
probability masses corresponding to
states in the randomized program

Provides 3 functions:
e |[nitialization: creates the data structure
e choice_fn: provides choices while
accounting for previous samples
e process_termination: updates the trie
to reflect the most recent sample

def sample_wor(draw_sample,
model, h, k):

samples = []

ur = UniqueRandomizer ()

for i in range(k):
s = draw_sample(model, h,

ur.choice_fn)

samples.append(s)
ur.process_termination()

return samples

Using UniqueRandomizer to draw
samples without replacement from the
draw_sample function.

UniqueRandomizer: Algorithm Summary

Trie structure:
e Each node represents a state of the randomized program, between random
choices.
e Each node stores the unsampled probability mass at that state.
e [Each edge represents one possible result of one random choice.

While sampling, maintain a current node that walks down the trie as random
choices are made.

e In choice_fn, use the probability distribution induced by the current node’s
children to choose a random index to return. Update the current node to the
corresponding child.

e Inprocess_termination, subtract the current node’s probability mass from
all of its ancestors. Reset the current node back to the trie root.

UniqueRandomizer: Example

def draw_sample(choice_fn):
sequence = []
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))
return sequence

A randomized program that produces binary
sequences of length O to 2.

Note: probability distributions are hardcoded for
the sake of example, but in practice they could be
computed by a model.

UnigueRandomizer: Example

sequence: []

length: ?

def draw_sample(choice_fn): i: ?
sequence = [] e

length = choice_fn([0.5, 0.4, 0.1])

for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence

A randomized program that produces binary
sequences of length O to 2.

UnigueRandomizer: Example

sequence: []

length: ?

def draw_sample(choice_fn): i: ?
sequence = []

length = choice_fn([0.5, 0.4, 0.1]) -+
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence

A randomized program that produces binary @ @ @
sequences of length O to 2.

UnigueRandomizer: Example

sequence: []

length: ?
def draw_sample(choice_fn): i: ?
sequence = []
length = choice_fn([0.5, 0.4, 0.1]) <+

for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence
A randomized program that produces binary
sequences of length O to 2.

Choose 1length using the distribution
[0.5, 0.4, 0.1]. Suppose we choose
length = 1 (with probability 0.4).

UnigueRandomizer: Example

sequence: []

length: 1

def draw_sample(choice_fn): i: ?
sequence = []

length = choice_fn([0.5, 0.4, 0.1]) -+
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence

A randomized program that produces binary @ @ @
sequences of length O to 2.

UnigueRandomizer: Example

sequence: []

length: 1
def draw_sample(choice_fn): i: @
sequence = []
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25])) =w—

return sequence

A randomized program that produces binary @ @ @
sequences of length O to 2.

UnigueRandomizer: Example

sequence: [0]

length: 1
def draw_sample(choice_fn): i: @
sequence = []
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25])) =w—

return sequence

A randomized program that produces binary @ @ @
sequences of length O to 2.

UnigueRandomizer: Example

sequence: [0]

length: 1
def draw_sample(choice_fn): i: 1
sequence = []
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence

<+
A randomized program that produces binary @ @ @
sequences of length O to 2.

The randomized program terminated. In
process_termination, we subtract the leaf’s —
probability mass (0.3) from all of its ancestors,

since the path has been sampled.

UnigueRandomizer: Example

def draw_sample(choice_fn):
sequence = []
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))
return sequence

A randomized program that produces binary
sequences of length O to 2.

sequence: [0]
length: 1

i: 1
‘IlEl’ ‘I:Il’ 1I:Il’

UnigueRandomizer: Example

def draw_sample(choice_fn):
sequence = []
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))
return sequence

A randomized program that produces binary
sequences of length O to 2.

sequence: [0]
length: 1

i: 1
‘IlEl’ ‘I:Il’ 1I:Il’

UnigueRandomizer: Example

sequence: []

length: ?
def draw_sample(choice_fn): i: ?
sequence = [] e
length = choice_fn([0.5, 0.4, 0.1])
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence

A randomized program that produces binary @ @ @
sequences of length O to 2.

Run draw_sample again to draw the next

sample, without replacement. The trie is

preserved from the previous run.

UnigueRandomizer: Example

sequence: []

length: ?

def draw_sample(choice_fn): i: ?
sequence = []

length = choice_fn([0.5, 0.4, 0.1]) -+
for i in range(length):
sequence.append(choice_fn([0.75, 0.25]))

return sequence

A randomized program that produces binary @ @ @
sequences of length O to 2.

Choose length using the unnormalized /
distribution [0.5, 0.1, 0.1], which normalizes to

approximately [0.71, 0.14, 0.14].

Unigque Choices vs. Unique Outputs

UniqueRandomizer actually guarantees that there are no duplicate sequences of
random choices. When does this lead to unique outputs?

Theorem (informal):
UniqueRandomizer samples unique outputs of a randomized program @
if and only if
every random choice in the execution of P partitions the set of outputs that
were possible at the time.

See the paper for a formal statement and proof.

Importantly, this condition is satisfied by sequence models!

Distribution of Samples

A randomized program @ run on the input x induces a probability distribution
over its outputs y. ~ P(y = @P(x)).

Theorem: When using UniqueRandomizer to sample unique outputs, the outputs
are drawn from the sequence of distributions

Pyor0i 1Yy) =P, =PX) |y, €y, .,)

This is the same distribution as produced by rejection sampling, without any
potential inefficiency!

Extensions (see paper)

Skipping probability computations when trie values will be used instead

o Avoid expensive model computations when revisiting a trie node
Incremental batched sampling by combining UniqueRandomizer with
Stochastic Beam Search!" to enable parallelism

o Use SBS to sample a batch using the probability distribution in the trie, and then
update the trie to prevent those samples from appearing in subsequent batches

Detecting when all outputs have been sampled

Locally modifying probabilities in the trie
o Could be useful to shift the distribution in response to new data

A novel estimator for the expectation EyN o /O], where f(y) is an arbitrary
function of the samples y drawn from the randomized program @

[1] Wouter Kool, Herke van Hoof, and Max Welling. Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for
Sampling Sequences Without Replacement. ICML 2019.

Experiments: Program Synthesis

SPoC!? dataset: C++ programs with pseudocode and I/O test cases
Train a Transformer to generate code given pseudocode
UniqueRandomizer gives +2.0% success rate over |.I.D. sampling
SPoC’s use of compiler diagnostics led to +1.7% success rate

Correct Programs for SPoC testp

22.3%

20.3%

Number of Correct Programs

100 4 - UniqueRandomizer, T=0.4
: —— Monte Carlo I.1.D., T=0.8

0 20 40 60 80 100
Number of Samples

[2] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy Liang.
SPoC: Search-based Pseudocode to Code. NeurlPS 2019.

Experiments: Efficiency

e UniqueRandomizer is faster than naive Monte Carlo I.1.D. sampling
e Batched UniqueRandomizer is as fast as SBS for a fixed number of samples,

but is incremental
Efficiency of Different Sampling Methods on GPU

700 :
----- Monte Carlo I.I.D.
----- Rejection
600 A SBS
—-= SBS (Doubling)
= 500 4 ——- UniqueRandomizer
s —— UniqueRandomizer (Batched)
£ 2
E i ————e]
(=]
£ |
E i
5 300 - i
n .
E _________________ -
g i
F 200 - ! X il
0 T T T T
0 20 40 60 80 100

Number of Samples

Experiments: TSP Heuristic + UniqueRandomizer

Farthest Insertion heuristic for TSP: maintain a cycle, iteratively choose the
node that is farthest from the cycle and insert it at the cheapest location

Relaxation: sample an insertion location i with probability o< costDelta(i)

1/t

UniqueRandomizer applied to this heuristic outperforms 2 of 3 recent neural
approaches, and is competitive with the SOTA neural approach

n =20 n = 50 n = 100

Method Cost Gap Cost Gap Cost Gap
Concorde (exact) 3.8357 0% 5.696 0% 7.765 0%
Bello et al., 1.1.d. sampling (*) — 5.75 0.95% | 8.00 3.03%
EAN, i.i.d. sampling (*) 3.84 0.11% 5.717 1.28% | 8.75 12.70%
AM, i.i.d. sampling 3.8381 0.063% | 5.724 0.49% | 7.944 2.31%
Far. Ins., greedy 3.9262 2.358% | 6.011 5.53% | 8.354 7.59%
Far. Ins., UniqueRandomizer | 3.8372 0.038% | 5.746 0.88% | 7.981 2.79%

Conclusion

UniqueRandomizer is a novel data structure for incremental sampling without
replacement from a wide class of randomized programs

Incremental sampling offers increased flexibility in stopping criteria, in
contrast to beam search where the number of samples is decided upfront
UniqueRandomizer is efficient and supports incremental batched sampling

Potentially useful in many domains:

o Program synthesis
Combinatorial optimization
Constraint satisfaction problems
Neural approaches to search problems
Natural language generation
Rollouts in reinforcement learning
Randomized rounding
Probabilistic programming

o o O O O O o©°

