
Incremental Sampling Without
Replacement for Sequence Models

Kensen Shi, David Bieber, Charles Sutton
(Google Research)

Example Motivation
Program synthesis: generate a program that satisfies a given specification

Sample candidate programs from the neural generator conditioned on the spec
● Incrementally: stopping as soon as a satisfactory program is found
● Without replacement: duplicate candidate programs are not useful

Program Specification
● I/O examples
● Symbolic constraints
● Natural language
● Pseudocode

neural
program

generator

candidate
program

satisfactory
solution

meets
spec?no yes

Motivation, More Generally
Neural search in a discrete output space for a solution that satisfies constraints

Sample candidate solutions from the neural generator conditioned on the spec
● Incrementally: stopping as soon as a satisfactory solution is found
● Without replacement: duplicate candidate solutions are not useful

Examples of search problems:
● Program synthesis
● Traveling Salesman Problem: find a tour with cost at most X
● Other combinatorial optimization problems
● SAT and SMT: find assignments to variables to satisfy all constraints

Benefits of Incremental Sampling
Incremental sampling enables more flexibility in stopping conditions.

With incremental sampling, one can draw distinct samples until…
● … a satisfactory solution is found
● … a time limit has passed
● … enough variety is obtained
● … an estimate has converged
● … a target fraction of the search space is explored
● … any arbitrary stopping criterion is met

Contrast with beam search…

Existing methods of drawing samples
Beam search and variants
● Produces a batch of distinct outputs
● Not incremental

○ One does not know upfront how large a batch should be
○ If one batch is insufficient, the next batch may have duplicates

Naive Monte Carlo I.I.D. sampling
● This is sampling with replacement since samples are independent

Rejection sampling
● Like Monte Carlo I.I.D. sampling, but duplicate samples are discarded
● Potentially inefficient if the output distribution is very peaked, as one would

expect from a well trained neural model

Our Contributions
● Approaching the sampling problem by manipulating the random choices

made by the program that generates the samples
● UniqueRandomizer, a data structure for sampling distinct outputs of a

randomized program
○ Incremental
○ Samples without replacement
○ Time and memory efficient
○ Can be extended to support batching

● Describing discrete randomized programs, the broad class of programs that
UniqueRandomizer can sample from

● A statistical estimator that applies to samples drawn without replacement
○ See paper for details

What can we sample from?
Discrete randomized programs:
● All randomness comes from a choice

function that chooses a random index
given a discrete probability distribution

● Cannot draw random floats
○ But, Uniform(0, 1) < 0.3 can be written

as choice_fn([0.3, 0.7]) == 0
● Can accept inputs, e.g., a trained model

and problem instance
● Can use control flow including

conditionals, loops, and recursion
● This broad class of programs includes

sequence models!

def draw_sample(model, h,
 choice_fn):
 tokens = []
 token = BOS
 for i in range(MAX_LEN):
 probs, h = model(token, h)
 token = choice_fn(probs)
 tokens.append(token)
 if token == EOS:
 break
 return tokens

A simple randomized program that
draws a sample from a recurrent
sequence model. It uses choice_fn to
make random decisions.

Using UniqueRandomizer to draw
samples without replacement from the
draw_sample function.

UniqueRandomizer: Overview
UniqueRandomizer is our solution to
incremental sampling without replacement
● Maintains a trie of unsampled

probability masses corresponding to
states in the randomized program

Provides 3 functions:
● Initialization: creates the data structure
● choice_fn: provides choices while

accounting for previous samples
● process_termination: updates the trie

to reflect the most recent sample

def sample_wor(draw_sample,
 model, h, k):
 samples = []
 ur = UniqueRandomizer()
 for i in range(k):
 s = draw_sample(model, h,
 ur.choice_fn)
 samples.append(s)
 ur.process_termination()
 return samples

Trie structure:
● Each node represents a state of the randomized program, between random

choices.
● Each node stores the unsampled probability mass at that state.
● Each edge represents one possible result of one random choice.

While sampling, maintain a current node that walks down the trie as random
choices are made.
● In choice_fn, use the probability distribution induced by the current node’s

children to choose a random index to return. Update the current node to the
corresponding child.

● In process_termination, subtract the current node’s probability mass from
all of its ancestors. Reset the current node back to the trie root.

UniqueRandomizer: Algorithm Summary

UniqueRandomizer: Example

def draw_sample(choice_fn):
 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

Note: probability distributions are hardcoded for
the sake of example, but in practice they could be
computed by a model.

UniqueRandomizer: Example

1.0

sequence: []
length: ?
i: ?def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

1.0

0.4 0.10.5

sequence: []
length: ?
i: ?def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

1.0

0.4 0.10.5

sequence: []
length: ?
i: ?

Choose length using the distribution
[0.5, 0.4, 0.1]. Suppose we choose
length = 1 (with probability 0.4).

def draw_sample(choice_fn):
 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

1.0

0.4 0.10.5

sequence: []
length: 1
i: ?def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

1.0

0.4 0.10.5

0.3 0.1

sequence: []
length: 1
i: 0def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

1.0

0.4 0.10.5

0.3 0.1

sequence: [0]
length: 1
i: 0def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

1.0

0.4 0.10.5

0.3 0.1

sequence: [0]
length: 1
i: 1def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

The randomized program terminated. In
process_termination, we subtract the leaf’s
probability mass (0.3) from all of its ancestors,
since the path has been sampled.

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

0.7

0.1 0.10.5

0.0 0.1

sequence: [0]
length: 1
i: 1def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example
sequence: [0]
length: 1
i: 1def draw_sample(choice_fn):

 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

0.7

0.1 0.10.5

0.0 0.1

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example
sequence: []
length: ?
i: ?

Run draw_sample again to draw the next
sample, without replacement. The trie is
preserved from the previous run.

def draw_sample(choice_fn):
 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

0.7

0.1 0.10.5

0.0 0.1

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer: Example

0.7

0.1 0.10.5

0.0 0.1

sequence: []
length: ?
i: ?

Choose length using the unnormalized
distribution [0.5, 0.1, 0.1], which normalizes to
approximately [0.71, 0.14, 0.14].

def draw_sample(choice_fn):
 sequence = []
 length = choice_fn([0.5, 0.4, 0.1])
 for i in range(length):
 sequence.append(choice_fn([0.75, 0.25]))
 return sequence

A randomized program that produces binary
sequences of length 0 to 2.

UniqueRandomizer actually guarantees that there are no duplicate sequences of
random choices. When does this lead to unique outputs?

Theorem (informal):
UniqueRandomizer samples unique outputs of a randomized program P

if and only if
every random choice in the execution of P partitions the set of outputs that
were possible at the time.

See the paper for a formal statement and proof.

Importantly, this condition is satisfied by sequence models!

Unique Choices vs. Unique Outputs

A randomized program P run on the input x induces a probability distribution

over its outputs yi ~ P(y = P(x)).

Theorem: When using UniqueRandomizer to sample unique outputs, the outputs
are drawn from the sequence of distributions

PWOR(yi | y1 : i−1) = P(yi = P(x) | yi ∉ y1 : i−1).

This is the same distribution as produced by rejection sampling, without any
potential inefficiency!

Distribution of Samples

● Skipping probability computations when trie values will be used instead
○ Avoid expensive model computations when revisiting a trie node

● Incremental batched sampling by combining UniqueRandomizer with
Stochastic Beam Search[1] to enable parallelism
○ Use SBS to sample a batch using the probability distribution in the trie, and then

update the trie to prevent those samples from appearing in subsequent batches
● Detecting when all outputs have been sampled
● Locally modifying probabilities in the trie

○ Could be useful to shift the distribution in response to new data

● A novel estimator for the expectation Ey ~ P [f(y)], where f(y) is an arbitrary

function of the samples y drawn from the randomized program P
[1] Wouter Kool, Herke van Hoof, and Max Welling. Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for
Sampling Sequences Without Replacement. ICML 2019.

Extensions (see paper)

● SPoC[2] dataset: C++ programs with pseudocode and I/O test cases
● Train a Transformer to generate code given pseudocode
● UniqueRandomizer gives +2.0% success rate over I.I.D. sampling
● SPoC’s use of compiler diagnostics led to +1.7% success rate

[2] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy Liang.
SPoC: Search-based Pseudocode to Code. NeurIPS 2019.

Experiments: Program Synthesis

● UniqueRandomizer is faster than naive Monte Carlo I.I.D. sampling
● Batched UniqueRandomizer is as fast as SBS for a fixed number of samples,

but is incremental

Experiments: Efficiency

● Farthest Insertion heuristic for TSP: maintain a cycle, iteratively choose the
node that is farthest from the cycle and insert it at the cheapest location

● Relaxation: sample an insertion location i with probability ∝ costDelta(i)−1/τ

● UniqueRandomizer applied to this heuristic outperforms 2 of 3 recent neural
approaches, and is competitive with the SOTA neural approach

Experiments: TSP Heuristic + UniqueRandomizer

● UniqueRandomizer is a novel data structure for incremental sampling without
replacement from a wide class of randomized programs

● Incremental sampling offers increased flexibility in stopping criteria, in
contrast to beam search where the number of samples is decided upfront

● UniqueRandomizer is efficient and supports incremental batched sampling
● Potentially useful in many domains:

○ Program synthesis
○ Combinatorial optimization
○ Constraint satisfaction problems
○ Neural approaches to search problems
○ Natural language generation
○ Rollouts in reinforcement learning
○ Randomized rounding
○ Probabilistic programming

Conclusion

