
Acceleration for Compressed Gradient Descent
in Distributed and Federated Optimization

Zhize Li
King Abdullah University of Science and Technology (KAUST)

https://zhizeli.github.io

Joint work with Dmitry Kovalev (KAUST), Xun Qian (KAUST)
and Peter Richtárik (KAUST)

ICML 2020

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 1 / 19

https://zhizeli.github.io


Overview

1 Problem

2 Related Work

3 Our Contributions
Single Device Setting
Distributed Setting

4 Experiments

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 2 / 19



Problem

Training distributed/federated learning models is typically performed by
solving an optimization problem

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
,

fi(x): loss function associated with data stored on node/device i
ψ(x): regularization term (e.g., `1 regularizer ‖x‖1, `2 regularizer ‖x‖22
or indicator function IC(x) for some set C)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 3 / 19



Examples

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}

Each node/device i stores m data samples {(ai ,j , bi ,j) ∈ Rd+1}mj=1

I Lasso regression: fi(x) = 1
m

∑m
j=1(aTi ,jx − bi ,j)

2, ψ(x) = λ‖x‖1
I Logistic regression: fi(x) = 1

m

∑m
j=1 log

(
1 + exp(−bi ,jaTi ,jx)

)
I SVM: fi(x) = 1

m

∑m
j=1 max

(
0, 1− bi ,ja

T
i ,jx
)
, ψ(x) = λ

2‖x‖
2
2

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 4 / 19



Goal

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}

Goal: find an ε-solution (parameters) x̂ , e.g., P(x̂)− P(x∗) ≤ ε or
‖x̂ − x∗‖22 ≤ ε, where x∗ := arg minx∈Rd P(x).

For optimization methods:
Bottleneck: communication cost
Common strategy: Compress the communicated messages (lower
communication cost in each iteration/communication round) and hope
that this will not increase the total number of iterations/comm. rounds.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 5 / 19



Goal

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}

Goal: find an ε-solution (parameters) x̂ , e.g., P(x̂)− P(x∗) ≤ ε or
‖x̂ − x∗‖22 ≤ ε, where x∗ := arg minx∈Rd P(x).

For optimization methods:
Bottleneck: communication cost
Common strategy: Compress the communicated messages (lower
communication cost in each iteration/communication round) and hope
that this will not increase the total number of iterations/comm. rounds.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 5 / 19



Related Work

• Several recent work show that the total communication complexity
can be improved via compression. See e.g., QSGD [Alistarh et al., 2017],
DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al.,
2019].

• However previous work usually lead to this kind of improvement:
Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• In this work, we provide the first optimization methods provably
combining the benefits of gradient compression and acceleration:

Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - - -)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 6 / 19



Related Work

• Several recent work show that the total communication complexity
can be improved via compression. See e.g., QSGD [Alistarh et al., 2017],
DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al.,
2019].
• However previous work usually lead to this kind of improvement:
Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• In this work, we provide the first optimization methods provably
combining the benefits of gradient compression and acceleration:

Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - - -)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 6 / 19



Related Work

• Several recent work show that the total communication complexity
can be improved via compression. See e.g., QSGD [Alistarh et al., 2017],
DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al.,
2019].
• However previous work usually lead to this kind of improvement:
Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• In this work, we provide the first optimization methods provably
combining the benefits of gradient compression and acceleration:

Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - - -)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 6 / 19



Single Device Setting

• First, consider the simple single device (i.e. n = 1)) case:

min
x∈Rd

f (x),

where f : Rd → R is L-smooth, and convex or µ-strongly convex.

• f is L-smooth or has L-Lipschitz continuous gradient (for L > 0) if

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, (1)

and µ-strongly convex (for µ ≥ 0) if

f (x)− f (y)− 〈∇f (y), x − y〉 ≥ µ

2
‖x − y‖2 (2)

for all x , y ∈ Rd . The µ = 0 case reduces to the standard convexity.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 7 / 19



Single Device Setting

• First, consider the simple single device (i.e. n = 1)) case:

min
x∈Rd

f (x),

where f : Rd → R is L-smooth, and convex or µ-strongly convex.

• f is L-smooth or has L-Lipschitz continuous gradient (for L > 0) if

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, (1)

and µ-strongly convex (for µ ≥ 0) if

f (x)− f (y)− 〈∇f (y), x − y〉 ≥ µ

2
‖x − y‖2 (2)

for all x , y ∈ Rd . The µ = 0 case reduces to the standard convexity.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 7 / 19



Compressed Gradient Descent (CGD)
• Problem: minx∈Rd f (x)

1) Given initial point x0, step-size η
2) CGD update: xk+1 = xk − ηC(∇f (xk)), for k ≥ 0

Definition (Compression operator)

A randomized map C : Rd 7→ Rd is an ω-compression operator if

E[C(x)] = x , E[‖C(x)− x‖2] ≤ ω‖x‖2, ∀x ∈ Rd . (3)

In particular, no compression (C(x) ≡ x) implies ω = 0.

Note that Condition (3) is satisfied by many practical compressions, e.g.,
random-k sparsification, (p, s)-quantization.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 8 / 19



Compressed Gradient Descent (CGD)
• Problem: minx∈Rd f (x)

1) Given initial point x0, step-size η
2) CGD update: xk+1 = xk − ηC(∇f (xk)), for k ≥ 0

Definition (Compression operator)

A randomized map C : Rd 7→ Rd is an ω-compression operator if

E[C(x)] = x , E[‖C(x)− x‖2] ≤ ω‖x‖2, ∀x ∈ Rd . (3)

In particular, no compression (C(x) ≡ x) implies ω = 0.

Note that Condition (3) is satisfied by many practical compressions, e.g.,
random-k sparsification, (p, s)-quantization.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 8 / 19



Accelerated Compressed Gradient Descent (ACGD)

Inspired by Nesterov’s accelerated gradient descent (AGD) [Nesterov,
2004] and FISTA [Beck and Teboulle, 2009], here we propose the first
accelerated compressed gradient descent (ACGD) method.

Our ACGD update:
1) xk = αky k + (1− αk)zk

2) y k+1 = xk − ηkC(∇f (xk))

3) zk+1 = βk
(
θkzk + (1− θk)xk

)
+ (1−βk)

(
γky k+1 + (1−γk)y k

)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 9 / 19



Convergence Results in Single Device Setting

Table: Convergence results (Iterations) for the single device (n = 1) case minx∈Rd f (x)

Algorithm µ-strongly convex f convex f

Compressed Gradient Descent
(CGD [Khirirat et al., 2018])

O
(
(1 + ω) Lµ log 1

ε

)
O
(
(1 + ω)Lε

)
ACGD (this paper) O

(
(1 + ω)

√
L
µ log 1

ε

)
O

(
(1 + ω)

√
L
ε

)

• If no compression (i.e., ω = 0): CGD recovers the results of vanilla
(uncompressed) GD, i.e., O(Lµ log 1

ε ) and O(Lε ).

• If compression parameter ω ≤ O
(√

L
µ

)
or O

(√
L
ε

)
:

Our ACGD enjoys the benefits of compression and acceleration, i.e.,
both the communication cost per iteration (compression) and the
total number of iterations (acceleration) are smaller than that of GD.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 10 / 19



Convergence Results in Single Device Setting

Table: Convergence results (Iterations) for the single device (n = 1) case minx∈Rd f (x)

Algorithm µ-strongly convex f convex f

Compressed Gradient Descent
(CGD [Khirirat et al., 2018])

O
(
(1 + ω) Lµ log 1

ε

)
O
(
(1 + ω)Lε

)
ACGD (this paper) O

(
(1 + ω)

√
L
µ log 1

ε

)
O

(
(1 + ω)

√
L
ε

)

• If no compression (i.e., ω = 0): CGD recovers the results of vanilla
(uncompressed) GD, i.e., O(Lµ log 1

ε ) and O(Lε ).

• If compression parameter ω ≤ O
(√

L
µ

)
or O

(√
L
ε

)
:

Our ACGD enjoys the benefits of compression and acceleration, i.e.,
both the communication cost per iteration (compression) and the
total number of iterations (acceleration) are smaller than that of GD.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 10 / 19



Recall the Discussion in Related Work

• Previous work usually lead to this kind of improvement:
Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• In this work, we provide the first optimization methods provably
combining the benefits of gradient compression and acceleration:

Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - - -)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 11 / 19



Distributed Setting

Now, we consider the general distributed setting with n devices/nodes:

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
.

The presence of multiple nodes (n > 1) and of the regularizer ψ poses
additional challenges.

We propose a distributed variant of ACGD (called ADIANA) which can
be seen as an accelerated version of DIANA [Mishchenko et al., 2019].

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 12 / 19



Distributed Setting

Now, we consider the general distributed setting with n devices/nodes:

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
.

The presence of multiple nodes (n > 1) and of the regularizer ψ poses
additional challenges.

We propose a distributed variant of ACGD (called ADIANA) which can
be seen as an accelerated version of DIANA [Mishchenko et al., 2019].

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 12 / 19



Accelerated DIANA (ADIANA)

Main update of our ADIANA:
1) xk = θ1z

k + θ2w
k + (1− θ1 − θ2)y k

2i) all devices/nodes/machines compress shifted local gradient
Ck

i (∇fi(xk)− hk
i ) in parallel and send to the server

2ii) update local shift hk+1
i = hk

i + αCk
i (∇fi(w k)− hk

i )

3) Aggregate received compressed gradient information

g k = 1
n

n∑
i=1

Ck
i (∇fi(xk)− hk

i ) + hk

4) Perform a proximal update step y k+1 = proxηψ(xk − ηg k)

5) zk+1 = βzk + (1− β)xk + γ
η (y k+1 − xk)

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 13 / 19



Convergence Results in Distributed Setting
Table: Convergence results (Iterations) for the general distributed case with n devices

(the result in the case n < ω can be found in Table 2 of our paper)

Algorithm
In the case n ≥ ω

(lots of devices or low compression)
Distributed CGD

(DIANA [Mishchenko et al., 2019])
O
((
ω + L

µ

)
log 1

ε

)
ADIANA (this paper) O

((
ω +

√
L
µ +

√√
ω
n
ωL
µ

)
log 1

ε

)

• Note that ω + L
µ ≥ 2

√
ωL
µ and

√
ω
n ≤ 1.

• If compression parameter ω ≤ O
(

min
{√

L
µ , n

1
3

})
: Our ADIANA

enjoys the benefits of compression and acceleration, i.e., lower
communication cost per iteration (compression) and fewer total

number of iterations (acceleration)
√

L
µ log 1

ε vs. L
µ log 1

ε .

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 14 / 19



Convergence Results in Distributed Setting
Table: Convergence results (Iterations) for the general distributed case with n devices

(the result in the case n < ω can be found in Table 2 of our paper)

Algorithm
In the case n ≥ ω

(lots of devices or low compression)
Distributed CGD

(DIANA [Mishchenko et al., 2019])
O
((
ω + L

µ

)
log 1

ε

)
ADIANA (this paper) O

((
ω +

√
L
µ +

√√
ω
n
ωL
µ

)
log 1

ε

)

• Note that ω + L
µ ≥ 2

√
ωL
µ and

√
ω
n ≤ 1.

• If compression parameter ω ≤ O
(

min
{√

L
µ , n

1
3

})
: Our ADIANA

enjoys the benefits of compression and acceleration, i.e., lower
communication cost per iteration (compression) and fewer total

number of iterations (acceleration)
√

L
µ log 1

ε vs. L
µ log 1

ε .

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 14 / 19



Convergence Results in Distributed Setting
Table: Convergence results (Iterations) for the general distributed case with n devices

(the result in the case n < ω can be found in Table 2 of our paper)

Algorithm
In the case n ≥ ω

(lots of devices or low compression)
Distributed CGD

(DIANA [Mishchenko et al., 2019])
O
((
ω + L

µ

)
log 1

ε

)
ADIANA (this paper) O

((
ω +

√
L
µ +

√√
ω
n
ωL
µ

)
log 1

ε

)

• Note that ω + L
µ ≥ 2

√
ωL
µ and

√
ω
n ≤ 1.

• If compression parameter ω ≤ O
(

min
{√

L
µ , n

1
3

})
: Our ADIANA

enjoys the benefits of compression and acceleration, i.e., lower
communication cost per iteration (compression) and fewer total

number of iterations (acceleration)
√

L
µ log 1

ε vs. L
µ log 1

ε .

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 14 / 19



Experiments

We demonstrate the performance of our accelerated distributed method
ADIANA and previous methods with different compression
operators on the regularized logistic regression problem,

min
x∈Rd

{
1

n

n∑
i=1

log
(
1 + exp(−biaTi x)

)
+
λ

2
‖x‖2

}
(4)

Compression operators: We adopt three compression operators:
random sparsification (see e.g. [Stich et al., 2018]), random
dithering (see e.g. [Alistarh et al., 2017]), and natural compression
(see e.g. [Horváth et al., 2019]).

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 15 / 19



Experiments

We demonstrate the performance of our accelerated distributed method
ADIANA and previous methods with different compression
operators on the regularized logistic regression problem,

min
x∈Rd

{
1

n

n∑
i=1

log
(
1 + exp(−biaTi x)

)
+
λ

2
‖x‖2

}
(4)

Compression operators: We adopt three compression operators:
random sparsification (see e.g. [Stich et al., 2018]), random
dithering (see e.g. [Alistarh et al., 2017]), and natural compression
(see e.g. [Horváth et al., 2019]).

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 15 / 19



0 1 2 3 4 5
Communication bits 1e7

10 15

10 12

10 9

10 6

10 3

100
f(x

k )
f(x

* )
Random Sparsification

data: a5a
DCGD
DIANA
ADIANA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Communication bits 1e7

10 15

10 12

10 9

10 6

10 3

100

f(x
k )

f(x
* )

Random Dithering

data: a5a
DCGD
DIANA
ADIANA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Communication bits 1e7

10 15

10 12

10 9

10 6

10 3

100

f(x
k )

f(x
* )

Natural Compression

data: a5a
DCGD
DIANA
ADIANA

0 1 2 3 4 5 6
Communication bits 1e7

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Random Sparsification

data: mushrooms
DCGD
DIANA
ADIANA

0.0 0.5 1.0 1.5 2.0
Communication bits 1e7

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Random Dithering

data: mushrooms
DCGD
DIANA
ADIANA

0.0 0.5 1.0 1.5 2.0
Communication bits 1e7

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Natural Compression

data: mushrooms
DCGD
DIANA
ADIANA

Figure: The communication complexity of three different methods for three
different compression operators on a5a (top) and mushrooms (bottom) datasets.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 16 / 19



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Communication bits 1e7

10 15

10 12

10 9

10 6

10 3

100

f(x
k )

f(x
* )

Random Dithering VS No Compression
data: a5a
DIANA
ADIANA
UN_DIANA
UN_ADIANA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Communication bits 1e7

10 15

10 12

10 9

10 6

10 3

100

f(x
k )

f(x
* )

Natural Compression VS No Compression

data: a5a
DIANA
ADIANA
UN_DIANA
UN_ADIANA

0.0 0.5 1.0 1.5 2.0
Communication bits 1e7

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Random Dithering VS No Compression

data: mushrooms
DIANA
ADIANA
UN_DIANA
UN_ADIANA

0.0 0.5 1.0 1.5 2.0
Communication bits 1e7

10 16

10 13

10 10

10 7

10 4

10 1

f(x
k )

f(x
* )

Natural Compression VS No Compression

data: mushrooms
DIANA
ADIANA
UN_DIANA
UN_ADIANA

Figure: The communication complexity of DIANA and ADIANA with and without
compression on a5a (top) and mushrooms (bottom) datasets.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 17 / 19



Conclusion

• We provide the first accelerated compressed gradient descent
methods (ACGD (n = 1) and ADIANA (general n > 1)) which combine
the benefits of compression and acceleration.

• The experimental results validate our theoretical results and confirm
the practical superiority of our accelerated methods.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 18 / 19



Thanks!

Zhize Li

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 19 / 19



Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances
in Neural Information Processing Systems, pages 1709–1720, 2017.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Samuel Horváth, Chen-Yu Ho, Ľudov́ıt Horváth, Atal Narayan Sahu, Marco Canini, and
Peter Richtárik. Natural compression for distributed deep learning. arXiv preprint
arXiv:1905.10988, 2019.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning
with compressed gradients. arXiv preprint arXiv:1806.06573, 2018.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik.
Distributed learning with compressed gradient differences. arXiv preprint
arXiv:1901.09269, 2019.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer
Academic Publishers, 2004.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with
memory. In Advances in Neural Information Processing Systems, pages 4447–4458,
2018.

Zhize Li (KAUST) Acceleration for Compressed Gradient Descent ICML 2020 19 / 19


	Problem
	Related Work
	Our Contributions
	Single Device Setting
	Distributed Setting

	Experiments
	References

