Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization

Zhize Li

King Abdullah University of Science and Technology (KAUST) https://zhizeli.github.io

Joint work with Dmitry Kovalev (KAUST), Xun Qian (KAUST) and Peter Richtárik (KAUST)

ICML 2020

ICML | 2020

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Thirty-seventh International Conference on Machine Learning

Zhize Li (KAUST)

Acceleration for Compressed Gradient Descent

ICML 2020 1 / 19

Overview

1 Problem

2 Related Work

Our Contributions

- Single Device Setting
- Distributed Setting

Experiments

< ∃ ▶

Problem

Training distributed/federated learning models is typically performed by solving an optimization problem

$$\min_{x\in\mathbb{R}^d}\Big\{P(x):=rac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\Big\},$$

 $f_i(x)$: loss function associated with data stored on node/device i $\psi(x)$: regularization term (e.g., ℓ_1 regularizer $||x||_1$, ℓ_2 regularizer $||x||_2^2$ or indicator function $\mathcal{I}_{\mathcal{C}}(x)$ for some set \mathcal{C})

Examples

$$\min_{x\in\mathbb{R}^d}\left\{P(x):=\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\}$$

Each node/device *i* stores *m* data samples $\{(a_{i,j}, b_{i,j}) \in \mathbb{R}^{d+1}\}_{i=1}^{m}$

- Lasso regression: $f_i(x) = \frac{1}{m} \sum_{j=1}^m (a_{i,j}^T x b_{i,j})^2$, $\psi(x) = \lambda \|x\|_1$
- **•** Logistic regression: $f_i(x) = \frac{1}{m} \sum_{j=1}^m \log \left(1 + \exp(-b_{i,j} a_{i,j}^T x)\right)$
- SVM: $f_i(x) = \frac{1}{m} \sum_{j=1}^m \max\left(0, 1 b_{i,j} a_{i,j}^T x\right), \quad \psi(x) = \frac{\lambda}{2} \|x\|_2^2$

Goal

$$\min_{x\in\mathbb{R}^d}\left\{P(x):=\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\}$$

Goal: find an ϵ -solution (parameters) \hat{x} , e.g., $P(\hat{x}) - P(x^*) \leq \epsilon$ or $\|\hat{x} - x^*\|_2^2 \leq \epsilon$, where $x^* := \arg \min_{x \in \mathbb{R}^d} P(x)$.

< □ > < □ > < □ > < □ > < □ > < □ >

Goal

$$\min_{x\in\mathbb{R}^d}\left\{P(x):=\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\}$$

Goal: find an ϵ -solution (parameters) \hat{x} , e.g., $P(\hat{x}) - P(x^*) \leq \epsilon$ or $\|\hat{x} - x^*\|_2^2 \leq \epsilon$, where $x^* := \arg \min_{x \in \mathbb{R}^d} P(x)$.

For optimization methods:

Bottleneck: communication cost

Common strategy: Compress the communicated messages (lower communication cost in each iteration/communication round) and hope that this will not increase the total number of iterations/comm. rounds.

Related Work

• Several recent work show that the total communication complexity can be improved via compression. See e.g., QSGD [Alistarh et al., 2017], DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al., 2019].

Related Work

• Several recent work show that the total communication complexity can be improved via compression. See e.g., QSGD [Alistarh et al., 2017], DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al., 2019].

• However previous work usually lead to this kind of improvement: Communication cost per iteration (- -) Iterations (+) \Rightarrow Total (-)

'-' denotes decrease, '+' denotes increase

Related Work

• Several recent work show that the total communication complexity can be improved via compression. See e.g., QSGD [Alistarh et al., 2017], DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al., 2019].

• However previous work usually lead to this kind of improvement: Communication cost per iteration (- -) Iterations (+) \Rightarrow Total (-)

'-' denotes decrease, '+' denotes increase

In this work, we provide the first optimization methods provably combining the benefits of gradient compression and acceleration:
 Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - -)

イロト イヨト イヨト 一座

Single Device Setting

• First, consider the simple single device (i.e. n = 1)) case: $\min_{x \in \mathbb{R}^d} f(x),$

where $f : \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth, and convex or μ -strongly convex.

A B A A B A

Single Device Setting

• First, consider the simple single device (i.e. n = 1)) case: $\min_{x \in \mathbb{R}^d} f(x),$

where $f : \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth, and convex or μ -strongly convex.

• f is L-smooth or has L-Lipschitz continuous gradient (for L > 0) if $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|,$ (1)

and $\mu\text{-strongly convex}$ (for $\mu\geq$ 0) if

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge \frac{\mu}{2} \|x - y\|^2$$
(2)

for all $x, y \in \mathbb{R}^d$. The $\mu = 0$ case reduces to the standard convexity.

Compressed Gradient Descent (CGD)

- Problem: $\min_{x \in \mathbb{R}^d} f(x)$
- 1) Given initial point x^0 , step-size η
- 2) CGD update: $x^{k+1} = x^k \eta C(\nabla f(x^k))$, for $k \ge 0$

Compressed Gradient Descent (CGD)

- Problem: min_{x∈ℝ^d} f(x)
 1) Given initial point x⁰, step-size η
- 2) CGD update: $x^{k+1} = x^k \eta C(\nabla f(x^k))$, for $k \ge 0$

Definition (Compression operator)

A randomized map $\mathcal{C}: \mathbb{R}^d \mapsto \mathbb{R}^d$ is an ω -compression operator if

$$\mathbb{E}[\mathcal{C}(x)] = x, \quad \mathbb{E}[\|\mathcal{C}(x) - x\|^2] \le \omega \|x\|^2, \quad \forall x \in \mathbb{R}^d.$$
(3)

In particular, no compression $(\mathcal{C}(x) \equiv x)$ implies $\omega = 0$.

Note that Condition (3) is satisfied by many practical compressions, e.g., random-k sparsification, (p, s)-quantization.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Accelerated Compressed Gradient Descent (ACGD)

Inspired by Nesterov's accelerated gradient descent (AGD) [Nesterov, 2004] and FISTA [Beck and Teboulle, 2009], here we propose the first accelerated compressed gradient descent (ACGD) method.

Our ACGD update: 1) $x^{k} = \alpha_{k}y^{k} + (1 - \alpha_{k})z^{k}$ 2) $y^{k+1} = x^{k} - \eta_{k}C(\nabla f(x^{k}))$ 3) $z^{k+1} = \beta_{k}(\theta_{k}z^{k} + (1 - \theta_{k})x^{k}) + (1 - \beta_{k})(\gamma_{k}y^{k+1} + (1 - \gamma_{k})y^{k})$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Convergence Results in Single Device Setting

Table: Convergence results (Iterations) for the single device (n = 1) case min_{$x \in \mathbb{R}^d$} f(x)

Algorithm	μ -strongly convex f	convex f
Compressed Gradient Descent (CGD [Khirirat et al., 2018])	$O\left((1+\omega)rac{L}{\mu}\lograc{1}{\epsilon} ight)$	$O\left((1+\omega)rac{L}{\epsilon} ight)$
ACGD (this paper)	$O\left((1+\omega)\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$O\left((1+\omega)\sqrt{\frac{L}{\epsilon}} ight)$

• If no compression (i.e., $\omega = 0$): CGD recovers the results of vanilla (uncompressed) GD, i.e., $O(\frac{L}{\mu} \log \frac{1}{\epsilon})$ and $O(\frac{L}{\epsilon})$.

Convergence Results in Single Device Setting

Table: Convergence results (Iterations) for the single device (n = 1) case min_{$x \in \mathbb{R}^d$} f(x)

Algorithm	μ -strongly convex f	convex f
Compressed Gradient Descent (CGD [Khirirat et al., 2018])	$O\left((1+\omega)rac{L}{\mu}\lograc{1}{\epsilon} ight)$	$O\left((1+\omega)rac{L}{\epsilon} ight)$
ACGD (this paper)	$O\left((1+\omega)\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon} ight)$	$O\left((1+\omega)\sqrt{\frac{L}{\epsilon}} ight)$

• If no compression (i.e., $\omega = 0$): CGD recovers the results of vanilla (uncompressed) GD, i.e., $O(\frac{L}{\mu} \log \frac{1}{\epsilon})$ and $O(\frac{L}{\epsilon})$.

• If compression parameter $\omega \leq O(\sqrt{\frac{L}{\mu}})$ or $O(\sqrt{\frac{L}{\epsilon}})$: Our ACGD enjoys the benefits of compression and acceleration, i.e., both the communication cost per iteration (compression) and the total number of iterations (acceleration) are smaller than that of GD.

Recall the Discussion in Related Work

Previous work usually lead to this kind of improvement:
 Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)
 '-' denotes decrease, '+' denotes increase

In this work, we provide the first optimization methods provably combining the benefits of gradient compression and acceleration:
 Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - -)

Distributed Setting

Now, we consider the general distributed setting with n devices/nodes:

$$\min_{x\in\mathbb{R}^d}\Big\{P(x):=\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\Big\}.$$

The presence of multiple nodes (n > 1) and of the regularizer ψ poses additional challenges.

Distributed Setting

Now, we consider the general distributed setting with n devices/nodes:

$$\min_{x\in\mathbb{R}^d}\Big\{P(x):=\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\Big\}.$$

The presence of multiple nodes (n > 1) and of the regularizer ψ poses additional challenges.

We propose a distributed variant of ACGD (called ADIANA) which can be seen as an accelerated version of DIANA [Mishchenko et al., 2019].

Accelerated DIANA (ADIANA)

Main update of our ADIANA: 1) $x^{k} = \theta_{1}z^{k} + \theta_{2}w^{k} + (1 - \theta_{1} - \theta_{2})y^{k}$ 2i) all devices/nodes/machines compress shifted local gradient $\mathcal{C}_{i}^{k}(\nabla f_{i}(x^{k}) - h_{i}^{k})$ in parallel and send to the server 2ii) update local shift $h_i^{k+1} = h_i^k + \alpha C_i^k (\nabla f_i(w^k) - h_i^k)$ 3) Aggregate received compressed gradient information $g^{k} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{C}_{i}^{k} (\nabla f_{i}(x^{k}) - h_{i}^{k}) + h^{k}$ 4) Perform a proximal update step $y^{k+1} = \operatorname{prox}_{mk}(x^k - \eta g^k)$ 5) $z^{k+1} = \beta z^k + (1-\beta)x^k + \frac{\gamma}{n}(y^{k+1}-x^k)$

• • = • • = •

Convergence Results in Distributed Setting

Table: Convergence results (Iterations) for the general distributed case with n devices (the result in the case $n < \omega$ can be found in Table 2 of our paper)

Algorithm	In the case $n \ge \omega$ (lots of devices or low compression)
Distributed CGD (DIANA [Mishchenko et al., 2019])	$O\left(\left(\omega+\frac{L}{\mu}\right)\log\frac{1}{\epsilon}\right)$
ADIANA (this paper)	$O\left(\left(\omega + \sqrt{\frac{L}{\mu}} + \sqrt{\sqrt{\frac{\omega}{n}}\frac{\omega L}{\mu}} ight)\log \frac{1}{\epsilon} ight)$

Convergence Results in Distributed Setting

Table: Convergence results (Iterations) for the general distributed case with n devices (the result in the case $n < \omega$ can be found in Table 2 of our paper)

Algorithm	In the case $n \ge \omega$ (lots of devices or low compression)
Distributed CGD (DIANA [Mishchenko et al., 2019])	$O\left(\left(\omega+rac{L}{\mu} ight)\lograc{1}{\epsilon} ight)$
ADIANA (this paper)	$O\left(\left(\omega + \sqrt{\frac{L}{\mu}} + \sqrt{\sqrt{\frac{\omega}{n}}\frac{\omega L}{\mu}} ight)\log \frac{1}{\epsilon} ight)$

• Note that
$$\omega + \frac{L}{\mu} \ge 2\sqrt{\frac{\omega L}{\mu}}$$
 and $\sqrt{\frac{\omega}{n}} \le 1$.

Convergence Results in Distributed Setting

Table: Convergence results (Iterations) for the general distributed case with n devices (the result in the case $n < \omega$ can be found in Table 2 of our paper)

Algorithm	In the case $n\geq \omega$
Algorithm	(lots of devices or low compression)
Distributed CGD (DIANA [Mishchenko et al., 2019])	$O\left(\left(\omega+rac{L}{\mu} ight)\lograc{1}{\epsilon} ight)$
ADIANA (this paper)	$O\left(\left(\omega + \sqrt{rac{L}{\mu}} + \sqrt{\sqrt{rac{\omega}{n}}rac{\omega L}{\mu}} ight)\lograc{1}{\epsilon} ight)$

• Note that
$$\omega + rac{L}{\mu} \geq 2\sqrt{rac{\omega L}{\mu}}$$
 and $\sqrt{rac{\omega}{n}} \leq 1$.

• If compression parameter $\omega \leq O\left(\min\left\{\sqrt{\frac{L}{\mu}}, n^{\frac{1}{3}}\right\}\right)$: Our ADIANA enjoys the benefits of compression and acceleration, i.e., lower communication cost per iteration (compression) and fewer total number of iterations (acceleration) $\sqrt{\frac{L}{\mu}\log\frac{1}{\epsilon}}$ vs. $\frac{L}{\mu}\log\frac{1}{\epsilon}$.

Experiments

We demonstrate the performance of our accelerated distributed method ADIANA and previous methods with different compression operators on the regularized logistic regression problem,

$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \log\left(1 + \exp(-b_i a_i^T x) \right) + \frac{\lambda}{2} \|x\|^2 \right\}$$
(4)

Experiments

We demonstrate the performance of our accelerated distributed method ADIANA and previous methods with different compression operators on the regularized logistic regression problem,

$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \log\left(1 + \exp(-b_i a_i^T x)\right) + \frac{\lambda}{2} \|x\|^2 \right\}$$
(4)

Compression operators: We adopt three compression operators: **random sparsification** (see e.g. [Stich et al., 2018]), **random dithering** (see e.g. [Alistarh et al., 2017]), and **natural compression** (see e.g. [Horváth et al., 2019]).

Figure: The communication complexity of three different methods for three different compression operators on a5a (top) and mushrooms (bottom) datasets.

• • • • • • • • • • •

Figure: The communication complexity of **DIANA** and **ADIANA** with and without compression on a5a (top) and mushrooms (bottom) datasets.

(日)

Conclusion

• We provide the first accelerated compressed gradient descent methods (ACGD (n = 1) and ADIANA (general n > 1)) which combine the benefits of compression and acceleration.

• The experimental results validate our theoretical results and confirm the practical superiority of our accelerated methods.

Thanks!

Zhize Li

Zhize Li (KAUST)

Acceleration for Compressed Gradient Descent

ICML 2020 19 / 19

э

<ロト <問ト < 目と < 目と

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient SGD via gradient quantization and encoding. In *Advances in Neural Information Processing Systems*, pages 1709–1720, 2017.

- Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- Samuel Horváth, Chen-Yu Ho, Ľudovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter Richtárik. Natural compression for distributed deep learning. *arXiv preprint arXiv:1905.10988*, 2019.
- Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with compressed gradients. *arXiv preprint arXiv:1806.06573*, 2018.
- Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.
- Yurii Nesterov. *Introductory lectures on convex optimization: a basic course*. Kluwer Academic Publishers, 2004.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In *Advances in Neural Information Processing Systems*, pages 4447–4458, 2018.