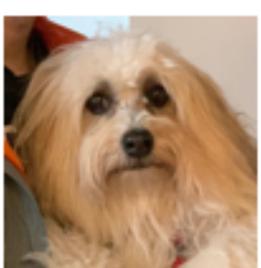
M. Asim, M. Daniels, O. Leong, P. Hand, A. Ahmed

INFORMATION TECHNOLOGY

Invertible Generative Models for Inverse Problems Mitigating Representation Error and Dataset Bias

Truth

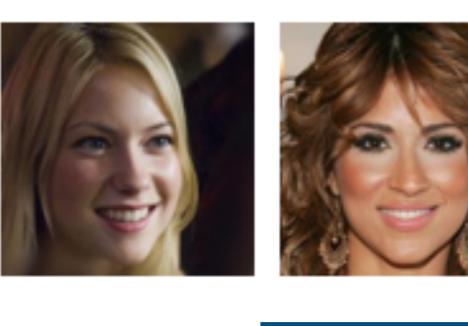
Lasso



Training Data

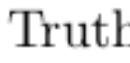
DCGAN

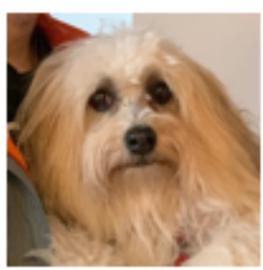
Training Data



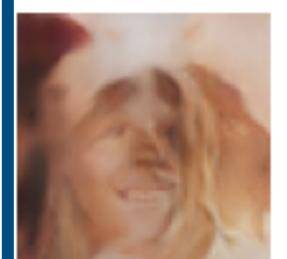
Truth

Lasso



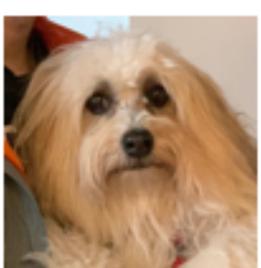


DCGAN



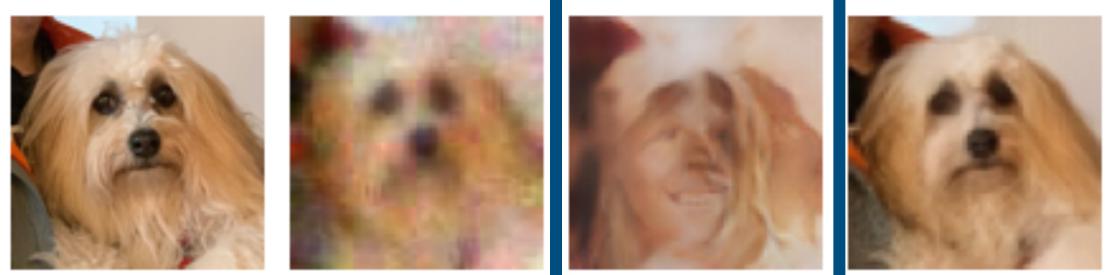
Truth

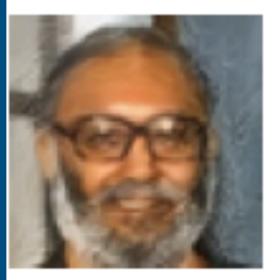
Lasso

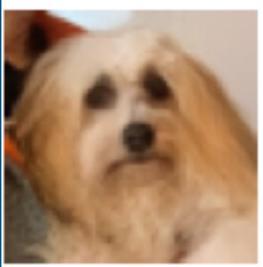


Training Data

DCGAN

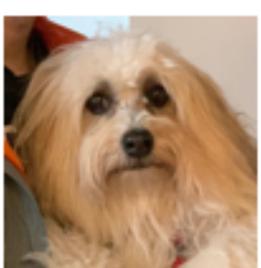






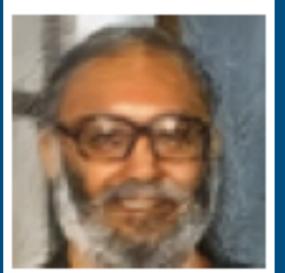
Truth

Lasso



Training Data

DCGAN



Contributions

Trained INN priors provide SOTA performance in a variety of inverse problems 1.

Trained INN priors exhibit strong performance on out-of-distribution images 2.

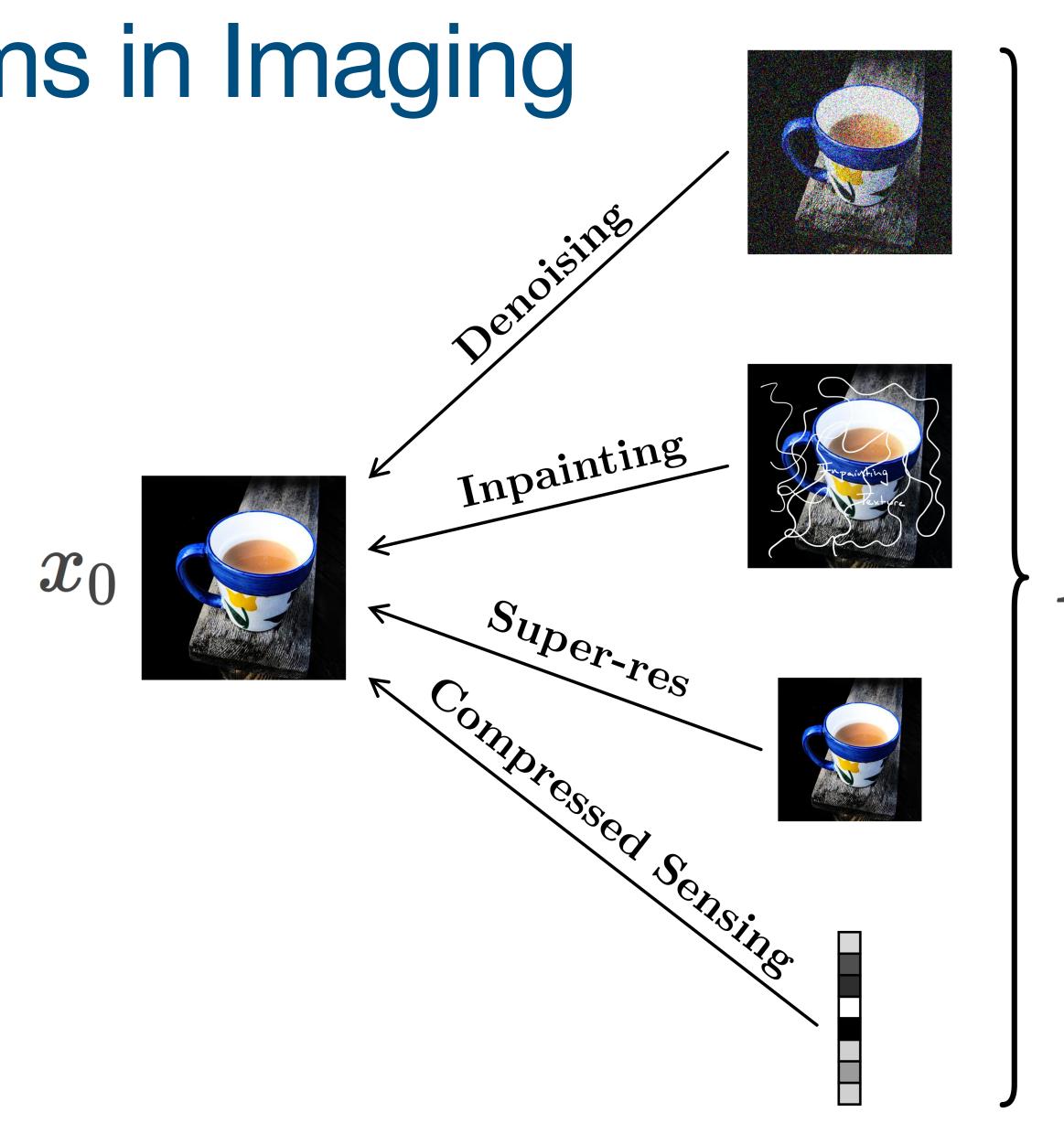
Theoretical guarantees in the case of linear invertible model 3.

Linear Inverse Problems in Imaging

Measurement matrix $A \in \mathbb{R}^{m imes n}$

$m ext{ noisy measurements} \ y = A x_0 + \eta$

Recover x_0



Invertible Generative Models via Normalizing Flows

- Learned invertible map
- Maps Gaussian to signal
 distribution
- Signal is a composition of Flow steps
- Admits exact calculation of image likelihood

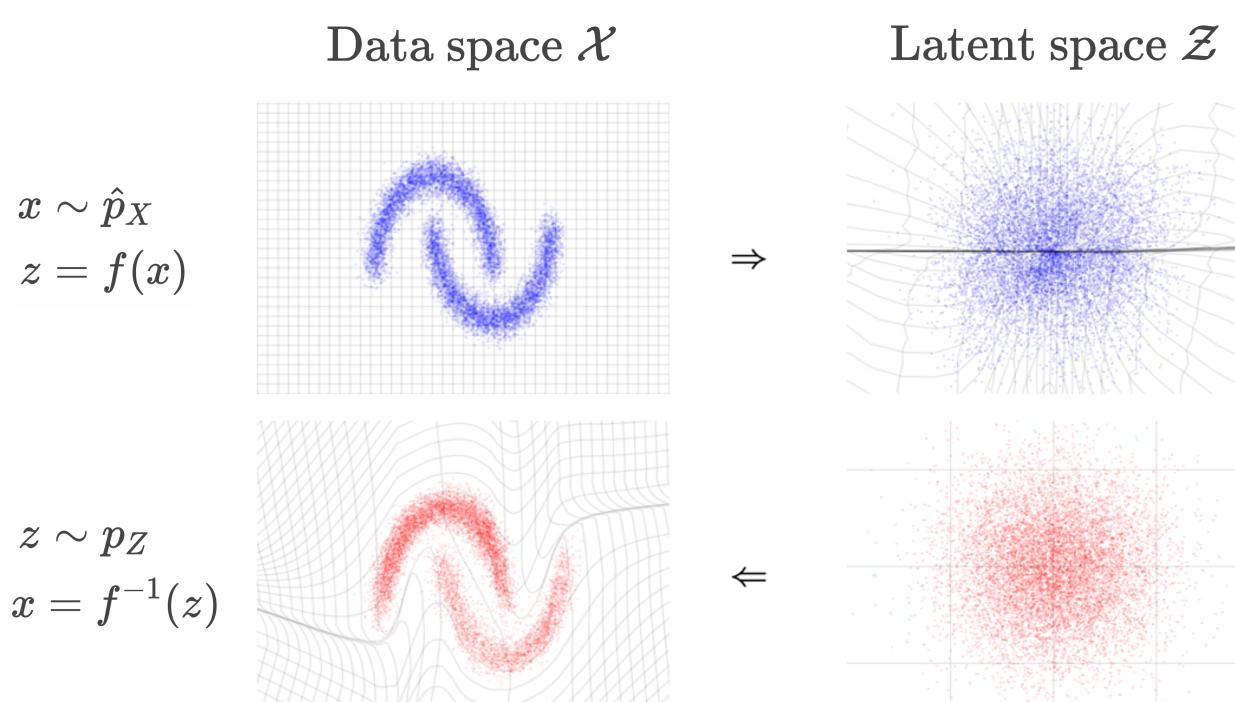


Fig 1. RealNVP (Dinh, Sohl-Dickstein, Bengio)

Central Architectural Element: affine coupling layer

Affine coupling layer:

1. Split input activations

 $x=(x_1,x_2)$

- 2. Compute learned affine transform $s,t=f_ heta(x_2)$
- 3. Apply the transformation $y_1 = s \odot x_1 + t$

Has a tractable Jacobian determinant Examples: RealNVP, GLOW

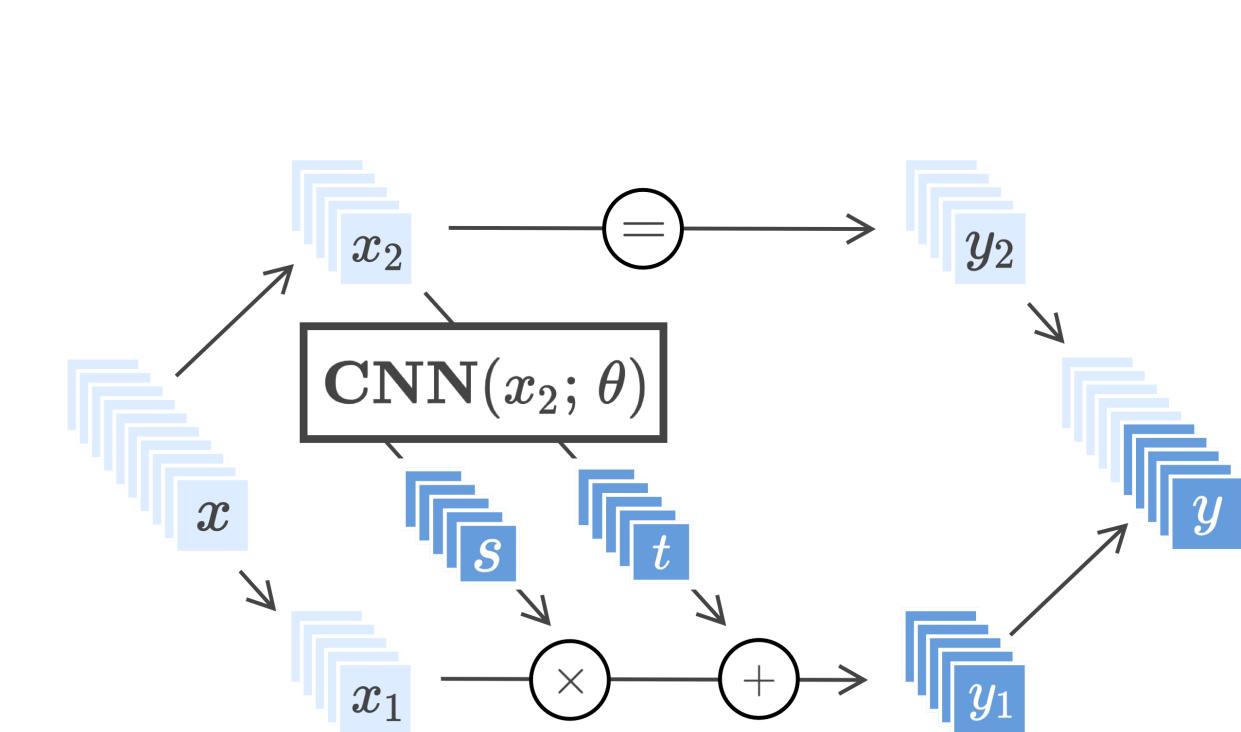


Fig 2. RealNVP (Dinh, Sohl-Dickstein, Bengio)

Formulation for Denoising

Given:

- 1. Noisy measurements of all pixels: $y = x_0 + \eta, \ \eta \sim \mathcal{N}(0, \sigma^2 I_n)$
- 2. Trained INN:

 $G:\mathbb{R}^n
ightarrow\mathbb{R}^n$

Find: x_0

MLE formulation over x -space: $\min_{x\in \mathbb{R}^n} \|x-y\|^2 - \gamma \log p_G(x)$

Proxy in z -space: $\min_{z\in \mathbb{R}^n} \|G(z)-y\|^2 + \gamma \|z\|^2$

INNs can outperform BM3D in denoising

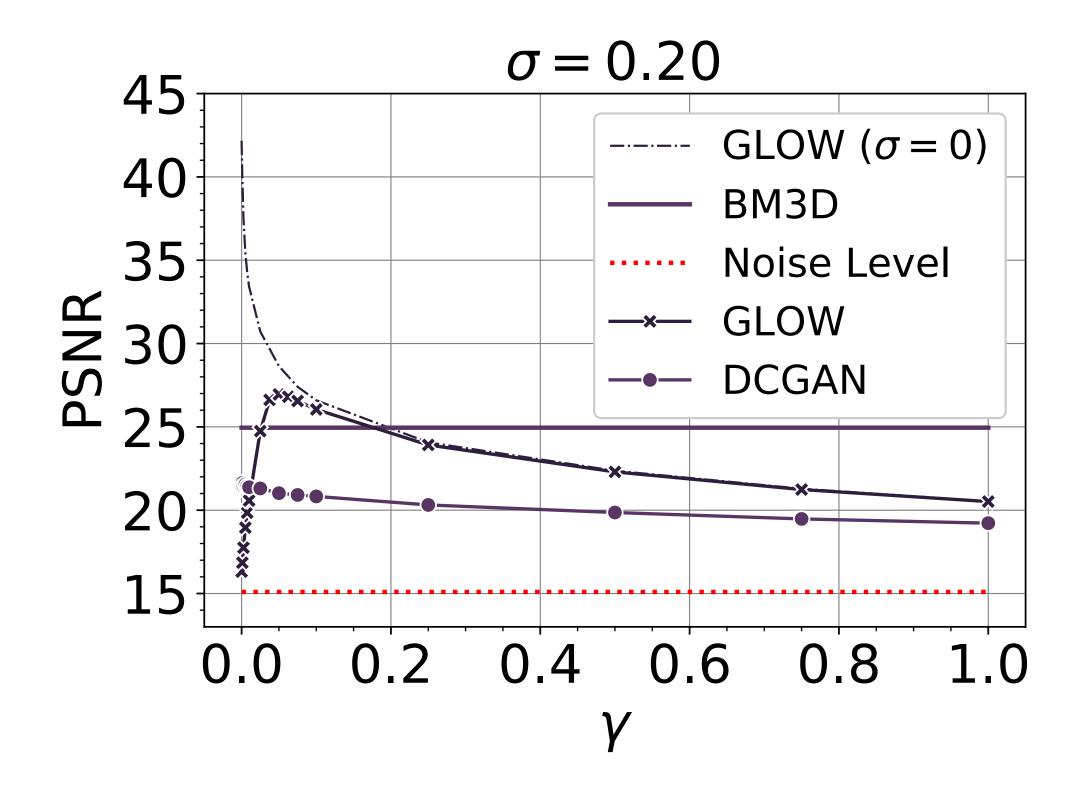
Given:

- 1. Noisy measurements of all pixels: $y = x_0 + \eta, \ \eta \sim \mathcal{N}(0, \sigma^2 I_n)$
- 2. Trained INN:

 $G:\mathbb{R}^n
ightarrow\mathbb{R}^n$

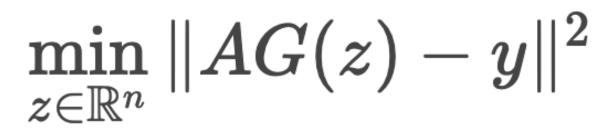
Find: x_0

 $\min_{z\in \mathbb{R}^n} \|G(z)-y\|^2 + \gamma \|z\|^2$



Formulation for Compressed Sensing

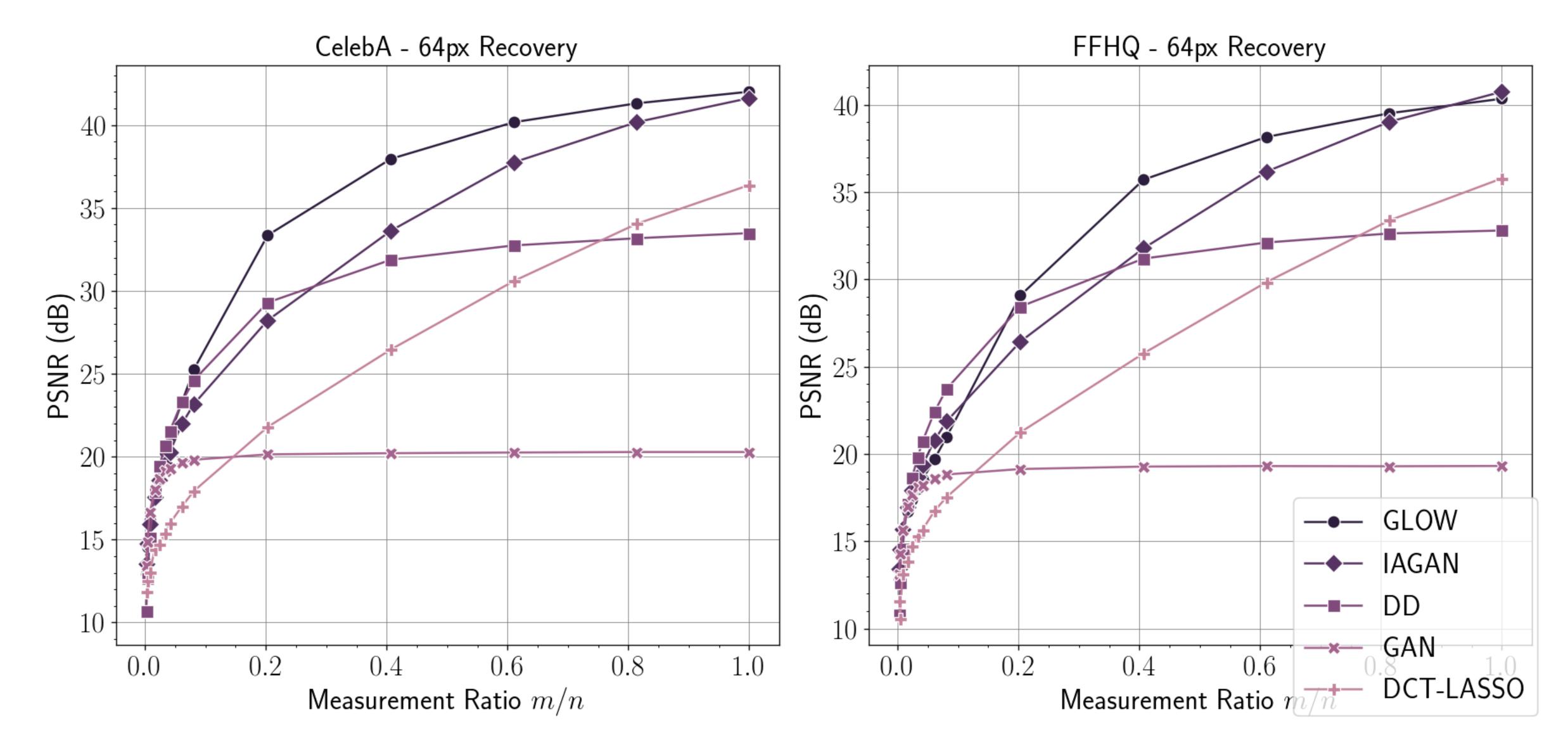
- Given: y $A \in \mathbb{R}^{m imes n}, \; A_{ij}$ (
 - Find: \hat{z} s



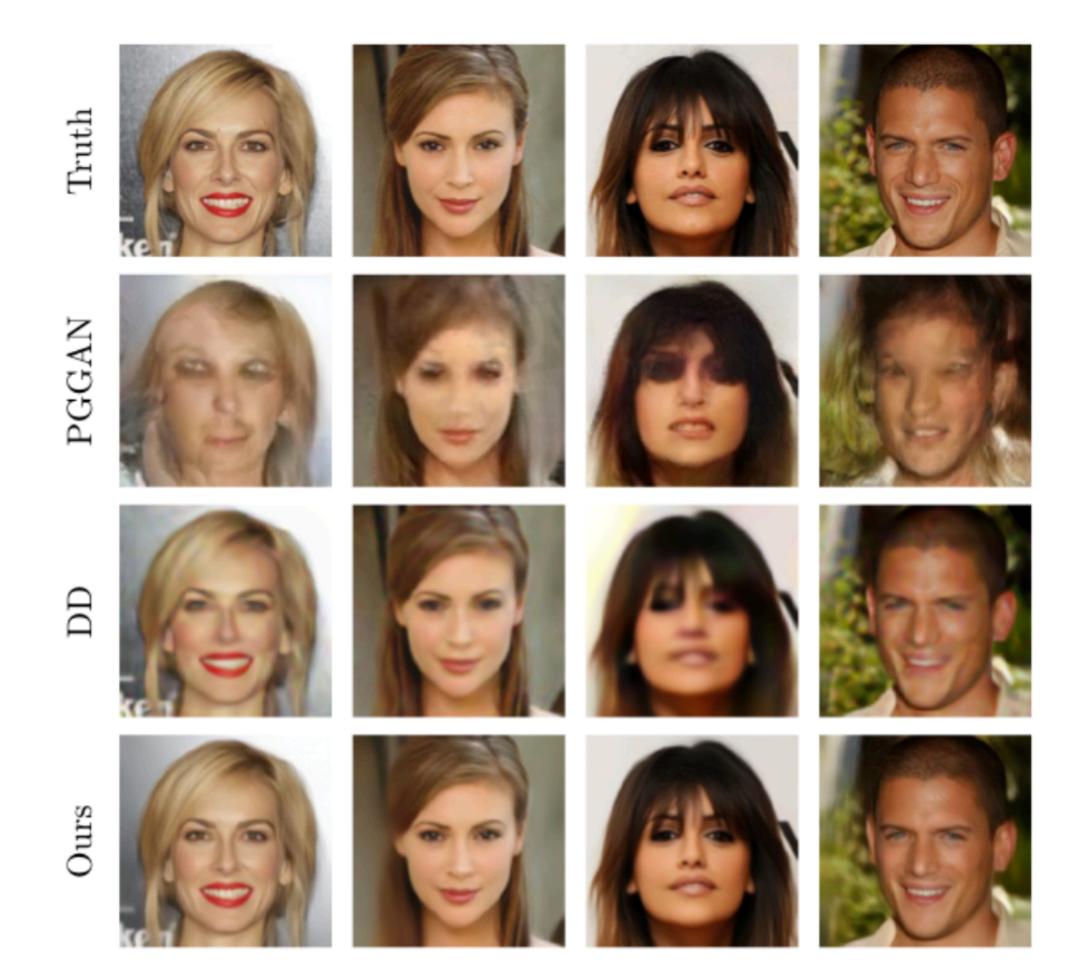
$$\mathcal{L} = A x_0 + \eta \ \sim \mathcal{N}(0, 1/m), \; m < n$$
.t. $G(\hat{z}) pprox x_0$

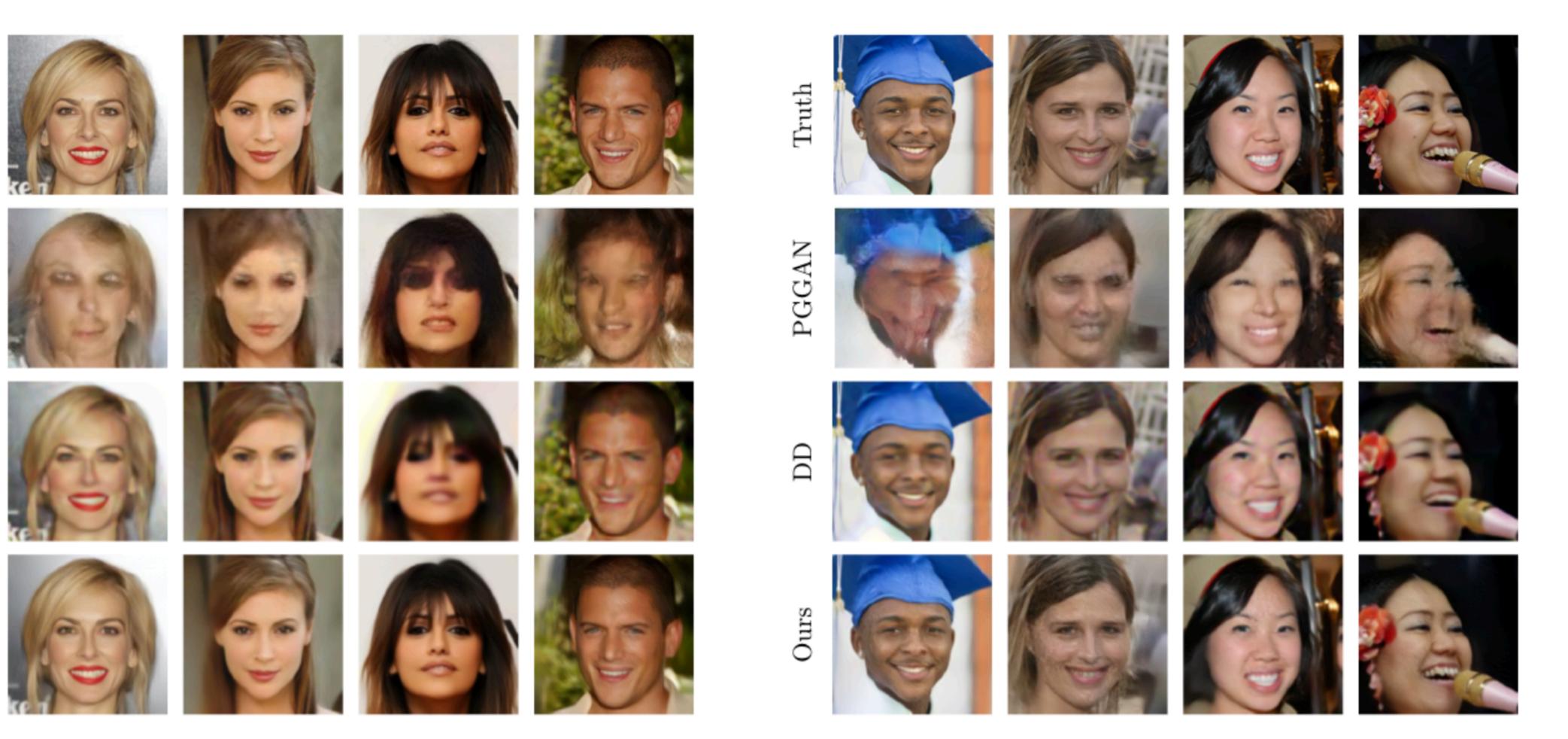
Solve via optimization in *z* -space:

Compressed Sensing



INNs exhibit strong OOD performance





INNs exhibit strong OOD performance



Strong OOD Performance on Semantic Inpainting

Within Distribution

Truth

Masked

DCGAN

 \mathbf{rs}

Out of Distribution

Theory for Linear Invertible Model

measurements Ax_0 , the MLE estimator

 $\hat{x} := rg m$ $x \in \mathbb{R}^{n}$

obeys

 $\sum \sigma_i^2 \leqslant \mathbb{E}_A \mathbb{F}$

Theorem: Let $G \in \mathbb{R}^{n \times n}$ with $\sigma_{\min} > 0$. Given *m* Gaussian

$$\max_{x} p_G(x) ext{ s.t. } Ax = Ax_0$$

$$\mathbb{E}_{x_0}\|\hat{x}-x_0\|^2\leqslant m\sum_{i>m-2}\sigma_i^2.$$

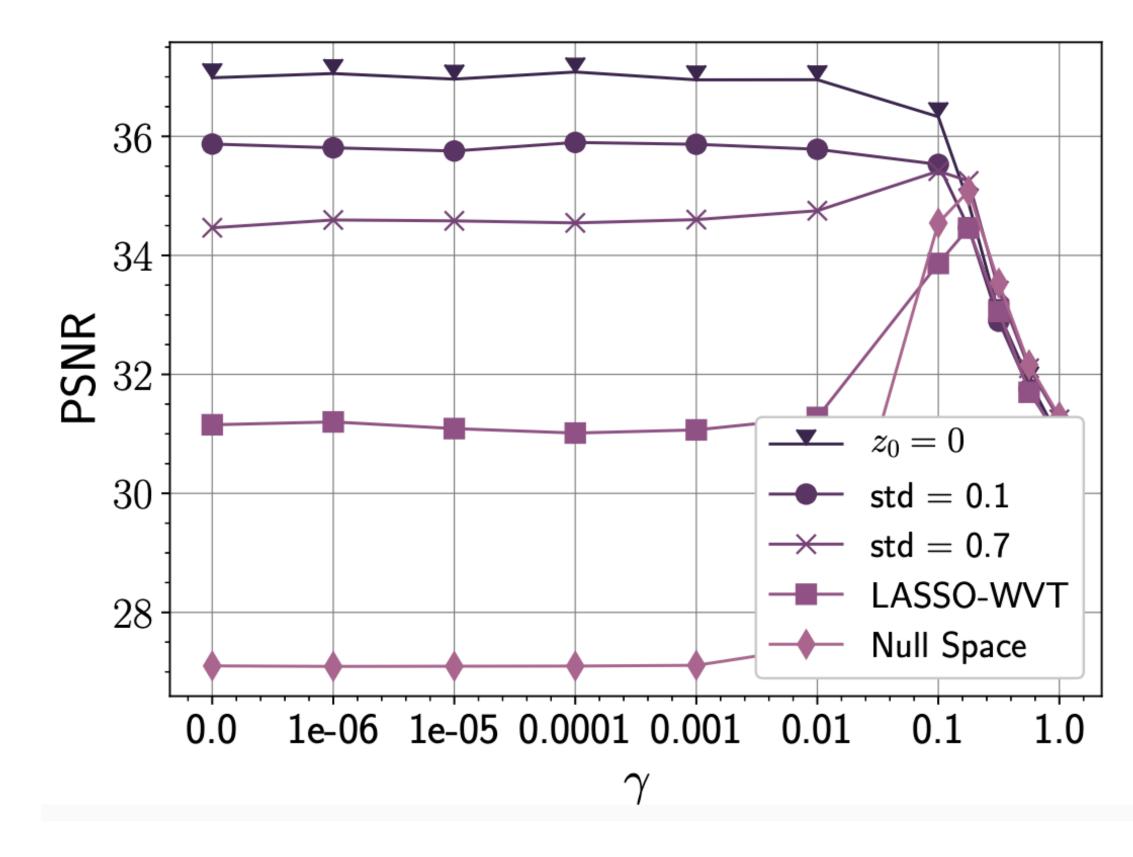
Discussion

- Why do INNs perform so well OOD?
- Invertibility guarantees zero representation error

- Where does regularization occur?
- Explicitly by penalization or implicitly by initialization + optimization

When is regularization helpful in CS?

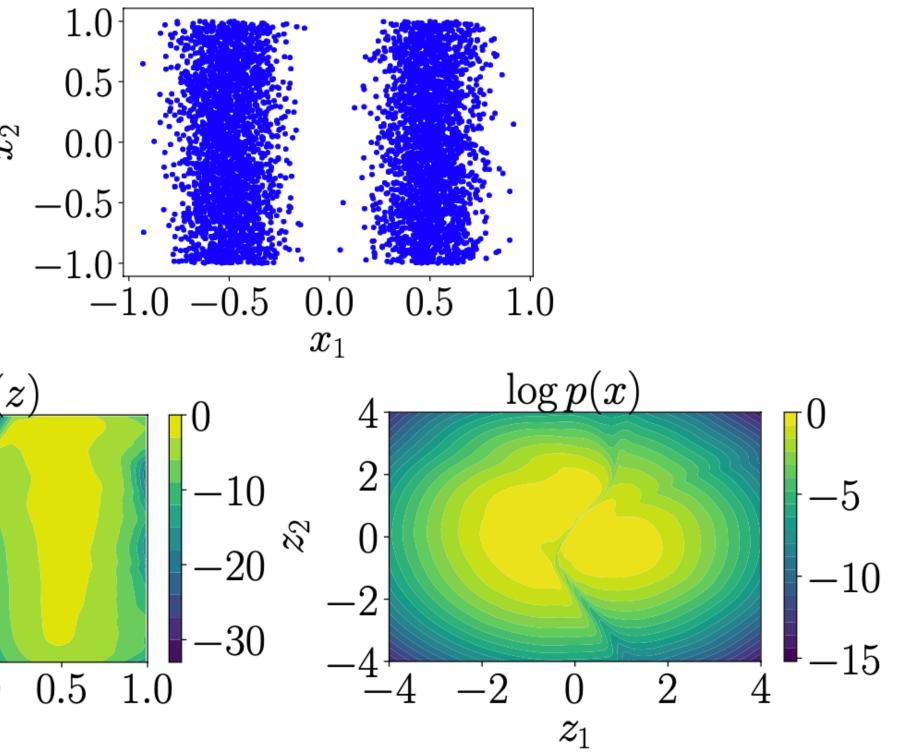
 $\min_{z\in \mathbb{R}^n} \|AG(z)-y\|^2+\gamma\|z\|^2$

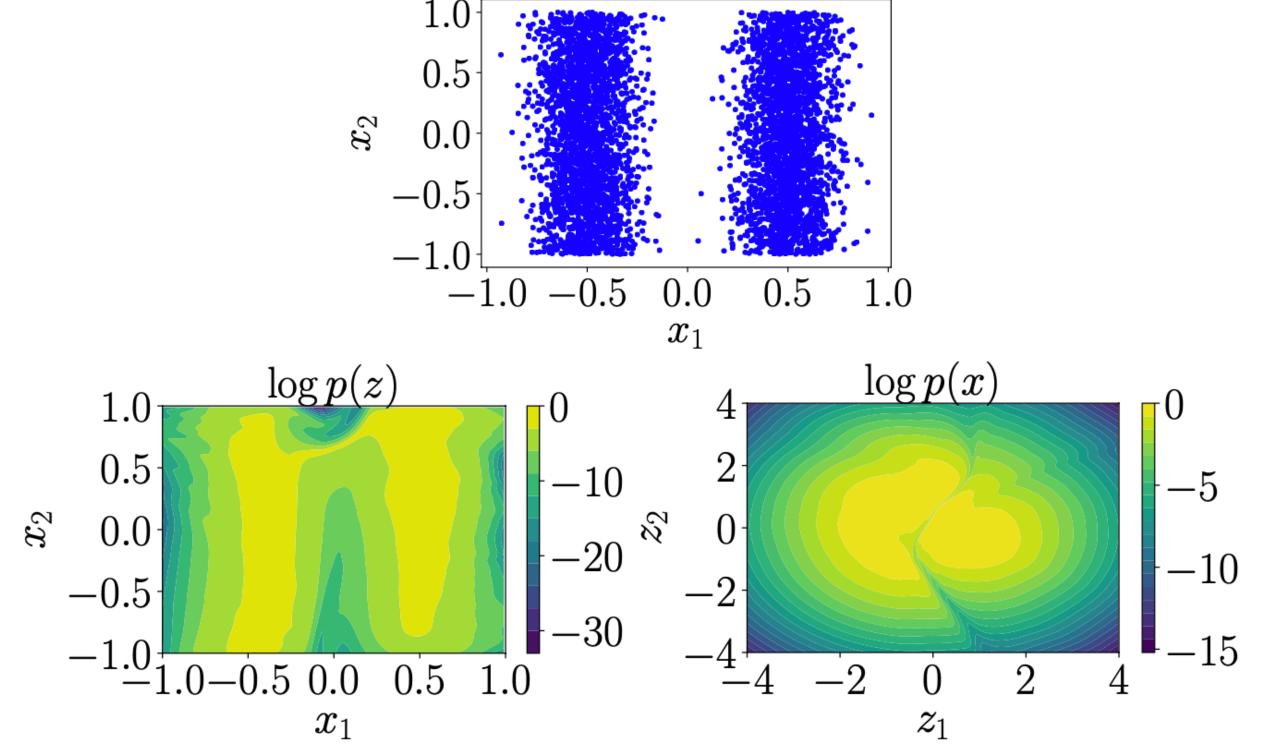


High likelihood init Regularization by init + opt alg

Low likelihood init Explicit regularization needed

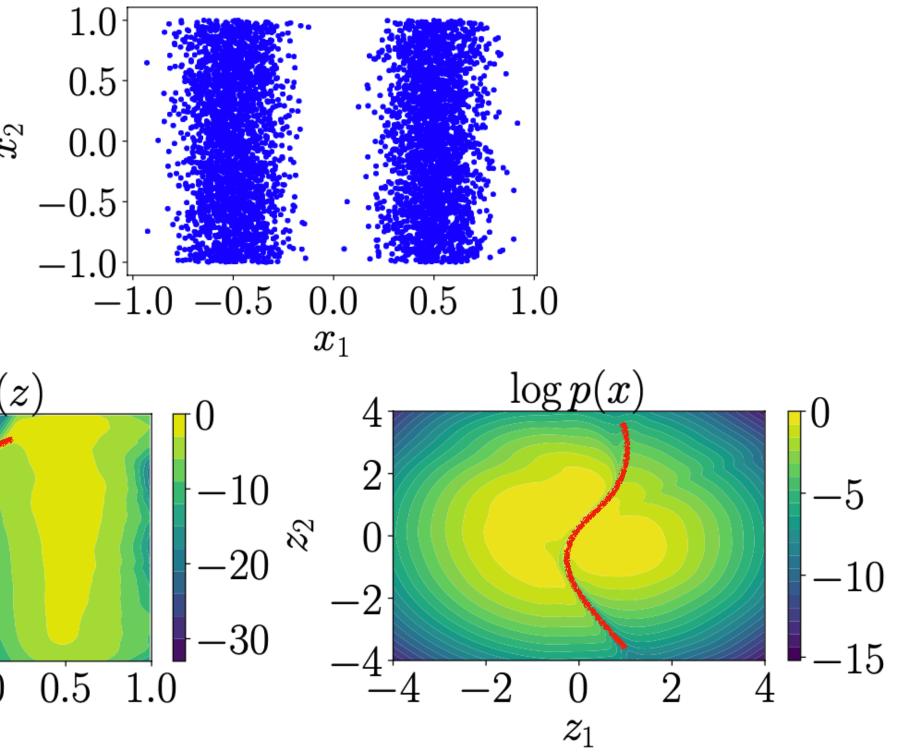
Why is likelihood in latent space a good proxy?

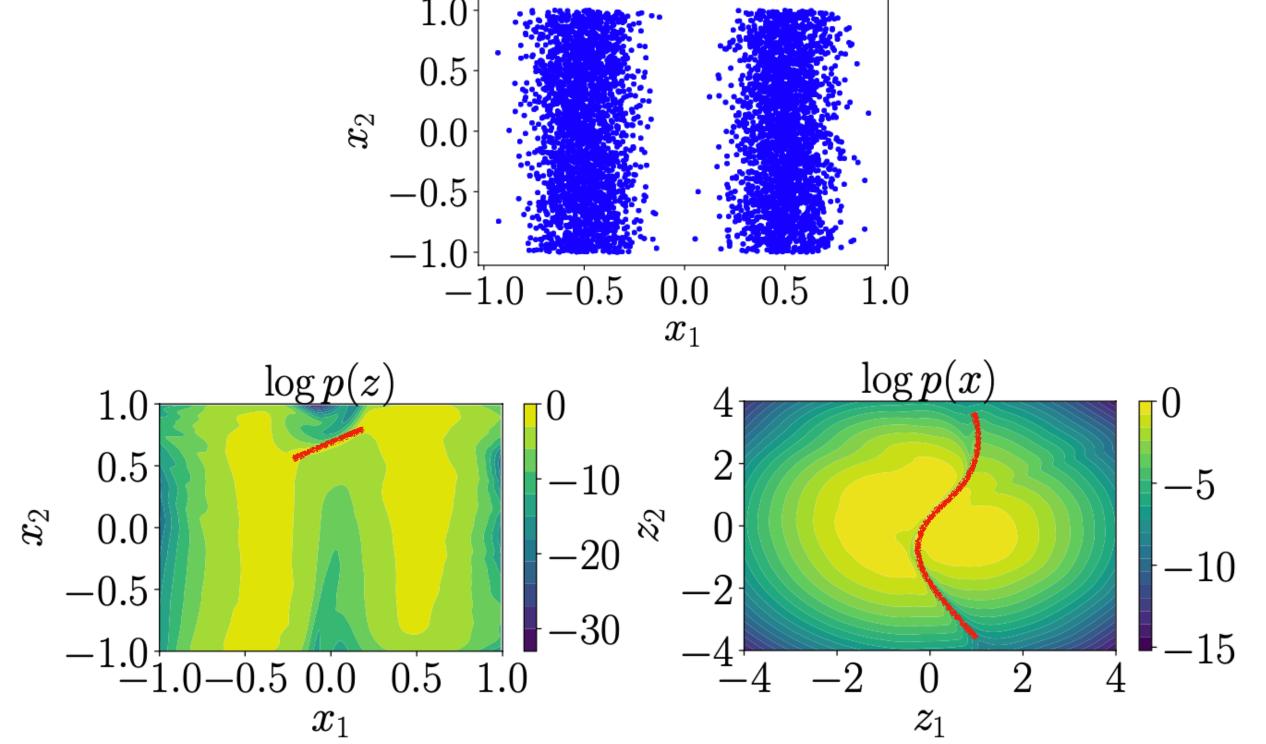




High likelihood regions in latent space generally correspond to high likelihood regions in image space

Why is likelihood in latent space a good proxy?





High likelihood regions in latent space generally correspond to high likelihood regions in image space

Contributions

Trained INN priors provide SOTA performance in a variety of inverse problems 1.

Trained INN priors exhibit strong performance on out-of-distribution images 2.

Theoretical guarantees in the case of linear invertible model 3.

