
Neural Contextual Bandits with UCB-based

Exploration

Dongruo Zhou 1 Lihong Li 2 Quanquan Gu 1

1Department of Computer Science, UCLA

2Google Research

1 / 49

Outline

I Background
I Contextual bandit problem
I Deep neural networks

2 / 49

Outline

I Background
I Contextual bandit problem
I Deep neural networks

I Algorithm – NeuralUCB
I Use a neural network to learn the reward
I Use neural network’s gradient to explore
I Upper confidence bound strategy

3 / 49

Outline

I Background
I Contextual bandit problem
I Deep neural networks

I Algorithm – NeuralUCB
I Use a neural network to learn the reward
I Use neural network’s gradient to explore
I Upper confidence bound strategy

I Main theory
I Neural tangent kernel matrix and effective dimension
I Õ(

√
T) regret

4 / 49

Background – decision-making problems

Decision-making problems are everywhere!
I As a gambler in a casino, find a slot machine, you will...

I Limited budget, maximize the payoff !
I Which arm to pull?

I As a movie recommender, you need to...
I Recommend movies based on users’ interests, maximize users’

purchase rate
I Which movie to recommend?

(a) Slot machine (b) Movie recommendation

5 / 49

Background – contextual bandit

K-armed contextual bandit problem: movie recommendation

6 / 49

Background – contextual bandit

K-armed contextual bandit problem: movie recommendation
At round t,

I Agent observes K d-dimensional contextual vectors (user’s movie
purchase history)

{xt,a ∈ Rd | a ∈ [K]}

7 / 49

Background – contextual bandit

K-armed contextual bandit problem: movie recommendation
At round t,

I Agent observes K d-dimensional contextual vectors (user’s movie
purchase history)

{xt,a ∈ Rd | a ∈ [K]}

I Agent selects an action at and receives a reward rt,at (recommends
some movie and user choose to purchase or not)

8 / 49

Background – contextual bandit

K-armed contextual bandit problem: movie recommendation
At round t,

I Agent observes K d-dimensional contextual vectors (user’s movie
purchase history)

{xt,a ∈ Rd | a ∈ [K]}

I Agent selects an action at and receives a reward rt,at (recommends
some movie and user choose to purchase or not)

I The goal is to minimize the following pesudo regret

RT = E
[T∑

t=1

(rt,a∗t − rt,at)
]

where a∗t = argmaxa∈[K]E[rt,a] is the optimal action at round t

9 / 49

Background – contextual linear bandit

rt,at = 〈θ∗,xt,at〉+ ξt, ξt ∼ ν-sub-Gaussian

10 / 49

Background – contextual linear bandit

rt,at = 〈θ∗,xt,at〉+ ξt, ξt ∼ ν-sub-Gaussian

I Build confidence set for θ∗ and use optimism in the face of
uncertainty (OFU) principle

11 / 49

Background – contextual linear bandit

rt,at = 〈θ∗,xt,at〉+ ξt, ξt ∼ ν-sub-Gaussian

I Build confidence set for θ∗ and use optimism in the face of
uncertainty (OFU) principle

I Leads to Õ(d
√
T) regret (Abbasi-Yadkori et al. 2011)

I Strongly depends on linear structure!

12 / 49

Background – general reward function

rt,at = h(xt,at) +ξt, 0 ≤ h(x) ≤ 1, ξt ∼ ν-sub-Gaussian

13 / 49

Background – general reward function

rt,at = h(xt,at) +ξt, 0 ≤ h(x) ≤ 1, ξt ∼ ν-sub-Gaussian

I Including many popular contextual bandit problems
I Linear bandit

I h(x) = 〈θ,x〉, where ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1

I Generalized linear bandit
I h(x) = g(〈θ,x〉), where ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1, |∇g| ≤ 1

14 / 49

Background – general reward function

rt,at = h(xt,at) +ξt, 0 ≤ h(x) ≤ 1, ξt ∼ ν-sub-Gaussian

I Including many popular contextual bandit problems
I Linear bandit

I h(x) = 〈θ,x〉, where ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1

I Generalized linear bandit
I h(x) = g(〈θ,x〉), where ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1, |∇g| ≤ 1

We do not know what h is...

15 / 49

Background – general reward function

rt,at = h(xt,at) +ξt, 0 ≤ h(x) ≤ 1, ξt ∼ ν-sub-Gaussian

I Including many popular contextual bandit problems
I Linear bandit

I h(x) = 〈θ,x〉, where ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1

I Generalized linear bandit
I h(x) = g(〈θ,x〉), where ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1, |∇g| ≤ 1

We do not know what h is...

Use some universal function approximator, such as neural networks!

16 / 49

Background – neural network

Fully connected neural networks:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))

17 / 49

Background – neural network

Fully connected neural networks:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))

I σ(x) = max{x, 0} is the ReLU activation function

18 / 49

Background – neural network

Fully connected neural networks:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))

I σ(x) = max{x, 0} is the ReLU activation function
I Wi is the weight matrix

I W1 ∈ Rm×d

I Wi ∈ Rm×m, 2 ≤ i ≤ L− 1
I WL ∈ Rm×1

19 / 49

Background – neural network

Fully connected neural networks:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))

I σ(x) = max{x, 0} is the ReLU activation function

I θ = [vec(W1)
>, . . . , vec(WL)>]> ∈ Rp, p = m+md+m2(L− 1)

20 / 49

Background – neural network

Fully connected neural networks:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))

I σ(x) = max{x, 0} is the ReLU activation function

I θ = [vec(W1)
>, . . . , vec(WL)>]> ∈ Rp, p = m+md+m2(L− 1)

I Gradient of the neural network g(x;θ) = ∇θf(x;θ) ∈ Rp

21 / 49

Question

I Neural network-based contextual bandit algorithms (Riquelme
et al. 2018; Zahavy and Mannor 2019)

I No theoretical guarantee

22 / 49

Question

I Neural network-based contextual bandit algorithms (Riquelme
et al. 2018; Zahavy and Mannor 2019)

I No theoretical guarantee

Can we design provably efficient neural network-based algorithm to
learn the general reward function?

23 / 49

Question

I Neural network-based contextual bandit algorithms (Riquelme
et al. 2018; Zahavy and Mannor 2019)

I No theoretical guarantee

Can we design provably efficient neural network-based algorithm to
learn the general reward function?

Yes! NeuralUCB

I Neural network to model reward function, UCB strategy to explore

I Theoretical guarantee on regret Õ(
√
T)

I Matches regret bound for linear setting (Abbasi-Yadkori
et al. 2011)

24 / 49

NeuralUCB – initialization

I Special initialization on θ0
I For 1 ≤ l ≤ L− 1,

Wl =

(
W 0
0 W

)
,W{i,j} ∼ N(0, 4/m)

I For L, W = (w>,−w>), w{i} ∼ N(0, 2/m)

25 / 49

NeuralUCB – initialization

I Special initialization on θ0
I For 1 ≤ l ≤ L− 1,

Wl =

(
W 0
0 W

)
,W{i,j} ∼ N(0, 4/m)

I For L, W = (w>,−w>), w{i} ∼ N(0, 2/m)

I Normalization on {xi}: for any 1 ≤ i ≤ TK, ‖xi‖2 = 1 and
[xi]j = [xi]j+d/2

I For any unit vector x, construct x′ = (x; x)/
√

2

26 / 49

NeuralUCB – initialization

I Special initialization on θ0
I For 1 ≤ l ≤ L− 1,

Wl =

(
W 0
0 W

)
,W{i,j} ∼ N(0, 4/m)

I For L, W = (w>,−w>), w{i} ∼ N(0, 2/m)

I Normalization on {xi}: for any 1 ≤ i ≤ TK, ‖xi‖2 = 1 and
[xi]j = [xi]j+d/2

I For any unit vector x, construct x′ = (x; x)/
√

2

Guarantee that f(xi;θ0) = 0!

27 / 49

NeuralUCB – upper confidence bounds

At round t, NeuralUCB will...

I Observe {xt,a}Ka=1

28 / 49

NeuralUCB – upper confidence bounds

At round t, NeuralUCB will...

I Observe {xt,a}Ka=1

I Compute upper confidence bound for each arm a, which is

Ut,a = f(xt,a;θt−1)︸ ︷︷ ︸
mean

+γt−1

√
g(xt,a;θt−1)>Z−1t−1g(xt,a;θt−1)/m︸ ︷︷ ︸

variance

29 / 49

NeuralUCB – upper confidence bounds

At round t, NeuralUCB will...

I Observe {xt,a}Ka=1

I Compute upper confidence bound for each arm a, which is

Ut,a = f(xt,a;θt−1)︸ ︷︷ ︸
mean

+γt−1

√
g(xt,a;θt−1)>Z−1t−1g(xt,a;θt−1)/m︸ ︷︷ ︸

variance

Compared with LinUCB (Li et al. 2010)

Ut,a = 〈xt,a,θt−1〉︸ ︷︷ ︸
mean

+γt−1

√
x>t,aZ

−1
t−1xt,a︸ ︷︷ ︸

variance

30 / 49

NeuralUCB – upper confidence bounds

At round t, NeuralUCB will...

I Observe {xt,a}Ka=1

I Compute upper confidence bound for each arm a, which is

Ut,a = f(xt,a;θt−1)︸ ︷︷ ︸
mean

+γt−1

√
g(xt,a;θt−1)>Z−1t−1g(xt,a;θt−1)/m︸ ︷︷ ︸

variance

Compared with LinUCB (Li et al. 2010)

Ut,a = 〈xt,a,θt−1〉︸ ︷︷ ︸
mean

+γt−1

√
x>t,aZ

−1
t−1xt,a︸ ︷︷ ︸

variance

I Select at = argmaxa∈[K] Ut,a, play at and observe reward rt,at

31 / 49

NeuralUCB – update parameter

After receiving reward, NeuralUCB will...

I Update Zt

Zt = Zt−1 + g(xt,at ;θt−1)g(xt,at ;θt−1)
>/m

32 / 49

NeuralUCB – update parameter

After receiving reward, NeuralUCB will...

I Update Zt

Zt = Zt−1 + g(xt,at ;θt−1)g(xt,at ;θt−1)
>/m

I Update θt using gradient descent
I Denote loss function L(θ) as

L(θ) =

t∑
i=1

(f(xi,ai ;θ)− ri,ai)
2/2 +mλ‖θ − θ(0)‖22/2

33 / 49

NeuralUCB – update parameter

After receiving reward, NeuralUCB will...

I Update Zt

Zt = Zt−1 + g(xt,at ;θt−1)g(xt,at ;θt−1)
>/m

I Update θt using gradient descent
I Denote loss function L(θ) as

L(θ) =

t∑
i=1

(f(xi,ai ;θ)− ri,ai)
2/2 +mλ‖θ − θ(0)‖22/2

I Run J step gradient descent on L(θ) starting from θ0, take θt as
the last iterate

θ(0) = θ0, θ
(j+1) = θ(j) − η∇L(θ(j)), θt = θ(J)

34 / 49

NeuralUCB – confidence radius

After update neural network function, NeuralUCB will compute γt,
which is ...

I Under the overparameterized setting (m� 1),

γt = O

(√
λS + ν

√
log

det Zt

δ detλI︸ ︷︷ ︸
confidence radius

+ (λ+ tL)(1− ηmλ)J/2
√
t/λ︸ ︷︷ ︸

function approximation error

)

35 / 49

NeuralUCB – confidence radius

After update neural network function, NeuralUCB will compute γt,
which is ...

I Under the overparameterized setting (m� 1),

γt = O

(√
λS + ν

√
log

det Zt

δ detλI︸ ︷︷ ︸
confidence radius

+ (λ+ tL)(1− ηmλ)J/2
√
t/λ︸ ︷︷ ︸

function approximation error

)

Compared with LinUCB,

γt = O

(√
λS + ν

√
log

det Zt

δ detλI

)
no function approximation error part!

36 / 49

Main theory – assumptions

Assumption

There exists λ0 > 0 such that H � λ0I, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{xi}TK

i=1.

37 / 49

Main theory – assumptions

Assumption

There exists λ0 > 0 such that H � λ0I, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{xi}TK

i=1.

I Satisfied if no two contexts in {xi}TK
i=1 are parallel.

38 / 49

Main theory – assumptions

Assumption

There exists λ0 > 0 such that H � λ0I, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{xi}TK

i=1.

I Satisfied if no two contexts in {xi}TK
i=1 are parallel.

Definition

The effective dimension d̃ of the neural tangent kernel matrix on
contexts {xi}TK

i=1 is defined as d̃ = log det(I + H/λ)/log(1 + TK/λ).

39 / 49

Main theory – assumptions

Assumption

There exists λ0 > 0 such that H � λ0I, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{xi}TK

i=1.

I Satisfied if no two contexts in {xi}TK
i=1 are parallel.

Definition

The effective dimension d̃ of the neural tangent kernel matrix on
contexts {xi}TK

i=1 is defined as d̃ = log det(I + H/λ)/log(1 + TK/λ).

I Notion adapted from Valko et al. (2013) and Yang and Wang
(2019)

40 / 49

Main theory – assumptions

Assumption

There exists λ0 > 0 such that H � λ0I, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{xi}TK

i=1.

I Satisfied if no two contexts in {xi}TK
i=1 are parallel.

Definition

The effective dimension d̃ of the neural tangent kernel matrix on
contexts {xi}TK

i=1 is defined as d̃ = log det(I + H/λ)/log(1 + TK/λ).

I Notion adapted from Valko et al. (2013) and Yang and Wang
(2019)

I d̃ ∼ log T in several special cases (Valko et al. 2013)

41 / 49

Main theory – regret bound

Theorem

Let h = [h(xi)]TK
i=1 ∈ RTK . Set J = Θ̃(TL/λ),

η = Θ((mTL+mλ)−1) and S = 2
√

h>H−1h. Under the
overparameterized setting (m� 1), with probability at least 1− δ,

RT = Õ
(√

d̃T

√
max{d̃, S2}

)
.

42 / 49

Main theory – regret bound

Theorem

Let h = [h(xi)]TK
i=1 ∈ RTK . Set J = Θ̃(TL/λ),

η = Θ((mTL+mλ)−1) and S = 2
√

h>H−1h. Under the
overparameterized setting (m� 1), with probability at least 1− δ,

RT = Õ
(√

d̃T

√
max{d̃, S2}

)
.

I h belongs to the RKHS space H spanned by H ⇒ S ≤ ‖h‖H

43 / 49

Main theory – regret bound

Theorem

Let h = [h(xi)]TK
i=1 ∈ RTK . Set J = Θ̃(TL/λ),

η = Θ((mTL+mλ)−1) and S = 2
√

h>H−1h. Under the
overparameterized setting (m� 1), with probability at least 1− δ,

RT = Õ
(√

d̃T

√
max{d̃, S2}

)
.

I h belongs to the RKHS space H spanned by H ⇒ S ≤ ‖h‖H
I RT does not depend on p, the dimension of the dynamic feature

mapping g(x;θ)

44 / 49

Main theory – regret bound

Theorem

Let h = [h(xi)]TK
i=1 ∈ RTK . Set J = Θ̃(TL/λ),

η = Θ((mTL+mλ)−1) and S = 2
√

h>H−1h. Under the
overparameterized setting (m� 1), with probability at least 1− δ,

RT = Õ
(√

d̃T

√
max{d̃, S2}

)
.

I h belongs to the RKHS space H spanned by H ⇒ S ≤ ‖h‖H
I RT does not depend on p, the dimension of the dynamic feature

mapping g(x;θ)

I Recover the regret for linear contextual bandit Õ(d
√
T)

(Abbasi-Yadkori et al. 2011)

45 / 49

Takeaway message

I NeuralUCB uses neural network f(x;θt) to predict, gradient
g(x;θt) to explore

46 / 49

Takeaway message

I NeuralUCB uses neural network f(x;θt) to predict, gradient
g(x;θt) to explore

I NeuralUCB achieves Õ(
√
T) regret, matches result for linear

setting

47 / 49

Takeaway message

I NeuralUCB uses neural network f(x;θt) to predict, gradient
g(x;θt) to explore

I NeuralUCB achieves Õ(
√
T) regret, matches result for linear

setting

I NeuralUCB also works well empirically

0 2000 4000 6000 8000 10000
Round

0

200

400

600

800

1000

1200

1400

1600

Re
gr

et

LinUCB
KernelUCB
BootstrappedNN
Neural -Greedy0
NeuralUCB0
Neural -Greedy
NeuralUCB

48 / 49

Takeaway message

I NeuralUCB uses neural network f(x;θt) to predict, gradient
g(x;θt) to explore

I NeuralUCB achieves Õ(
√
T) regret, matches result for linear

setting

I NeuralUCB also works well empirically

0 2000 4000 6000 8000 10000
Round

0

200

400

600

800

1000

1200

1400

1600

Re
gr

et

LinUCB
KernelUCB
BootstrappedNN
Neural -Greedy0
NeuralUCB0
Neural -Greedy
NeuralUCB Thank you!

49 / 49

