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Our Goal and Contributions

Robust Matrix Comepletion (MC), allows heavy tails.

Develop a robust and scalable estimator for median MC in
large-scale problems.

A fast and simple initial estimation via embarrassingly parallel
computing.

A refinement stage based on pseudo data.

Theoretically, we show that this refinement stage can improve the
convergence rate of the sub-optimal initial estimator to near-optimal
order, as good as the computationally expensive median MC
estimator.
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Background: The Netflix Problem

Y =

n1 ≈ 480K , n2 ≈ 18K .

On average each viewer rated about 200 movies. Only 1.2% entries
were observed.

Goal: recover the true rating matrix A?.
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Robust Matrix Completion

Low-rank-plus-sparse structure: A? + S + E .

Median matrix completion: based on the absolute deviation loss.

Under absolute deviation loss and the Huber loss, the convergence
rates of Elsener and Geer (2018) match with Koltchinskii et al.
(2011).

Alquier et al. (2019) derives the minimax rates of convergence with
any Lipschitz loss functions (absolute deviation loss).
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Trace Regression Model

N independent pairs (Xk ,Yk),

Yk = tr
(
XT

k A?

)
+ εk , k = 1, . . . ,N. (1)

The elements of ε = (ε1, . . . , εN) are N i.i.d. random noise variables
independent of the design matrices.

The design matrices Xk :

X = {ej(n1)ek(n2)T : j = 1, . . . , n1; k = 1, . . . , n2},
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Regularized Least Absolute Deviation Estimator

A? = (A?,ij)n1,n2
i ,j=1 ∈ Rn1×n2 , P(ε ≤ 0) = 0.5: A?,ij is the median of

Y | X. B(a, n,m) = {A ∈ Rn×m : ‖A‖∞ ≤ a} and A? ∈ B(a, n,m).

We use the absolute deviation loss:

A? = arg min
A∈B(a,n1,n2)

E
{∣∣∣Y − tr(XTA)

∣∣∣} .
To encourage a low-rank solution,

ÂLADMC = arg min
A∈B(a,n1,n2)

1
N

N∑
k=1

∣∣∣Yk − tr(XT
k A)

∣∣∣+ λ′N ‖A‖∗ .

Common computational strategies based on proximal gradient
method inapplicable (Sum of two non-differentiable terms).

Alquier et al. (2019) use ADMM, when the sample size and the
matrix dimensions are large, slow and not scalable in practice.
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Distributed Initial Estimator

Figure: An example of dividing a matrix into sub-matrices.

ÂLADMC,l = arg min
Al∈B(a,m1,m2)

1
Nl

∑
k∈Ωl

∣∣Yk − tr(XT
l,kAl )

∣∣+ λNl ,l ‖Al‖∗ .
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The Idea of Refinement

L(A; {Y ,X}) = |Y − tr(XTA)|. The Newton-Raphson iteration:

vec(A1) = vec(Â0)−H(Â0)−1E(Y ,X)
[
l(Â0; {Y ,X})

]
,

where Â0 is an initial estimator; l(A; {Y ,X}) is the sub-gradient and
H(A) is the Hessian matrix.

When Â0 is close to the minimizer A?,
vec(A1) ≈ vec(Â0)− [2f (0)diag(Π)]−1E(Y ,X)[l(Â0; {Y ,X})]

= E(Y ,X)

{
vec(Â0)− [f (0)]−1

(
I
[
Y ≤ tr(XTÂ0)

]
− 1

2

)
1n1n2

}
= {E(Y ,X)[vec(X)vec(X)T]}−1E(Y ,X)

(
vec(X)Ỹ 0

)
where Π = (π1,1, . . . , πn1,n2)T, πst = Pr(Xk = es(n1)eT

t (n2)), and the
theoretical pseudo data

Ỹ o = tr(XTÂ0)− [f (0)]−1
(
I
[
Y ≤ tr(XTÂ0)

]
− 1

2

)
.
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The First Iteration Refinement Details

vec(A1) ≈ arg minA E(Y ,X){Ỹ o − tr(XTA)}2.

Choice of the initial estimator: Â0 satisfies certain rate Condition.

K (x): kernel function; h > 0: the bandwidth.

f̂ (0) = 1
Nh

N∑
k=1

K
(

Yk − tr(XT
k Â0)

h

)
.

Let Ỹ = (Ỹk), denote

Ỹk = tr(XT
k Â0)− [f̂ (0)]−1

(
I
[
Yk ≤ tr(XT

k Â0)
]
− 1

2

)
.

By using Ỹ, one natural estimator is given by

Â = arg min
A∈B(a,n1,n2)

1
N

N∑
k=1

(
Ỹk − tr(XT

k A)
)2

+ λN ‖A‖∗ .
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The t-th Iteration Refinement Details

Let ht → 0 is the bandwidth for the t-th iteration,

f̂ (t)(0) = 1
Nht

N∑
k=1

K
(

Yk − tr(XT
k Â(t−1))

ht

)
.

Similarly, for each 1 ≤ k ≤ N, define

Ỹ (t)
k = tr(XT

k Â(t−1))−
(
f̂ (t) (0)

)−1
(
I
[
Yk ≤ tr(XT

k Â(t−1))
]
− 1

2

)
.

We propose the following estimator

Â(t) = arg min
A∈B(a,n1,n2)

1
N

N∑
k=1

(
Ỹ (t)

k − tr(XT
k A)

)2
+ λN,t ‖A‖∗ .
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Notations

n+ = n1 + n2, nmax = max{n1, n2} and nmin = min{n1, n2}. Denote
r? = rank(A?).

In additional to some regular conditions, the initial estimator Â0
satisfies (n1n2)−1/2‖Â0 − A?‖F = OP((n1n2)−1/2aN), where the
initial rate (n1n2)−1/2aN = o(1).

Denote the initial rate aN,0 = aN and define that

aN,t =

√
r?(n1n2)nmax log(n+)

N + nmin√r?

(√r?aN,0
nmin

)2t

.
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Convergence Results of Repeated Refinement Estimator

Theorem (Repeated refinement)
Suppose that certain regular conditions hold and A? ∈ B(a, n1, n2). By
choosing ht and λN,t to be certain orders, we have∥∥Â(t) − A?

∥∥2

F
n1n2

= OP

[
max

{√
log(n+)

N
, r?

(
nmax log(n+)

N
+

a4
N,t−1

n2
min(n1n2)

)}]
.

t ≥ log
{

log(r2
? n2

max log(n+))− log(nminN)
c0 log(r?a2

N,0)− 2c0 log(nmin)

}
/ log(2), for some c0 > 0,

The convergence rate of Â(t) becomes r?nmaxN−1 log(n+) which is
the near-optimal rate r?nmaxN−1 upto a logarithmic factor.

Under certain condition, t is of constant order.
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Synthetic Data Generation

A? = UVT, where the entries of U ∈ Rn1×r and V ∈ Rn2×r were all
drawn from N (0, 1) independently.

Set r = 3, chose n1 = n2: 400, repeat 500 times.

The missing rate was 0.2, we adopted the uniform missing mechanism.

Four noise distributions:
S1 Normal: ε ∼ N (0, 1).
S2 Cauchy: ε ∼ Cauchy(0, 1).
S3 Exponential: ε ∼ exp(1).
S4 t-distribution with degree of freedom 1: ε ∼ t1.

Cauchy distribution is a very heavy-tailed distribution and its first
moment (expectation) does not exist.
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Comparison Methods

(a) BLADMC: Blocked Least Absolute Deviation Matrix Completion
ÂLADMC,0. Number of row subsets l1 = 2, number of column subsets
l2 = 2.

(b) ACL: Least Absolute Deviation Matrix Completion with nuclear norm
penalty based on the computationally expensive ADMM algorithm
proposed by Alquier et al. (2019).

c) MHT: The squared loss estimator with nuclear norm penalty
proposed by Mazumder et al. (2010).
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Simulation Results for Noise Distribution S1 and S2

Table: The average RMSEs, MAEs, estimated ranks and their standard errors (in
parentheses) of DLADMC, BLADMC, ACL and MHT.

(T) DLADMC BLADMC

S1(4)

RMSE 0.5920 (0.0091) 0.7660 (0.0086)
MAE 0.4273 (0.0063) 0.5615 (0.006)
rank 52.90 (2.51) 400 (0.00)

S2(5)

RMSE 0.9395 (0.0544) 1.7421 (0.3767)
MAE 0.6735 (0.0339) 1.2061 (0.1570)
rank 36.49 (7.94) 272.25 (111.84)

(T) ACL MHT

S1(4)

RMSE 0.5518 (0.0081) 0.4607 (0.0070)
MAE 0.4031 (0.0056) 0.3375 (0.0047)
rank 400 (0.00) 36.89 (1.79)

S2(5)

RMSE 1.8236 (1.1486) 106.3660 (918.5790)
MAE 1.2434 (0.5828) 1.4666 (2.2963)
rank 277.08 (170.99) 1.25 (0.50)
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Simulation Results for Noise Distribution S3 and S4

Table: The average RMSEs, MAEs, estimated ranks and their standard errors (in
parentheses) of DLADMC, BLADMC, ACL and MHT.

(T) DLADMC BLADMC

S3(5)

RMSE 0.4868 (0.0092) 0.6319 (0.0090)
MAE 0.3418 (0.0058) 0.4484 (0.0057)
rank 66.66 (1.98) 400 (0.00)

S4(4)

RMSE 1.1374 (0.8945) 1.6453 (0.2639)
MAE 0.8317 (0.7370) 1.1708 (0.1307)
rank 47.85 (13.22) 249.16 (111.25)

(T) ACL MHT

S3(5)

RMSE 0.4164 (0.0074) 0.4928 (0.0083)
MAE 0.3121 (0.0054) 0.3649 (0.0058)
rank 400 (0.00) 37.91 (1.95)

S4(4)

RMSE 1.4968 (0.6141) 98.851 (445.4504)
MAE 1.0792 (0.3803) 1.4502 (1.1135)
rank 237.05 (182.68) 1.35 (0.71)
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MovieLens 100K Results

Table: The RMSEs, MAEs and estimated ranks.

DLADMC BLADMC ACL MHT

RawA

RMSE 0.9235 0.9451 0.9258 0.9166
MAE 0.7233 0.7416 0.7252 0.7196
rank 41 530 509 57

t 254.33 65.64 393.40 30.16

RawB

RMSE 0.9352 0.9593 0.9376 0.9304
MAE 0.7300 0.7498 0.7323 0.7280
rank 51 541 521 58

t 244.73 60.30 448.55 29.60

OutA

RMSE 1.0486 1.0813 1.0503 1.0820
MAE 0.8568 0.8833 0.8590 0.8971
rank 38 493 410 3

t 255.25 89.65 426.78 10.41

OutB

RMSE 1.0521 1.0871 1.0539 1.0862
MAE 0.8616 0.8905 0.8628 0.9021
rank 28 486 374 6

t 260.79 104.97 809.26 10.22
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Thank you!
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