Median Matrix Completion: from Embarrassment to Optimality

Xiaojun Mao

School of Data Science
Fudan University, China

$$
\text { June 15, } 2020
$$

Joint work with Dr. Weidong Liu (Shanghai Jiao Tong University, China) and Dr. Raymond K. W. Wong (Texas A\&M University, U.S.A.)

(1) Introduction

(2) Estimations

(3) Theoretical Guarantee

4 Experiments

Our Goal and Contributions

- Robust Matrix Comepletion (MC), allows heavy tails.
- Develop a robust and scalable estimator for median MC in large-scale problems.
- A fast and simple initial estimation via embarrassingly parallel computing.
- A refinement stage based on pseudo data.
- Theoretically, we show that this refinement stage can improve the convergence rate of the sub-optimal initial estimator to near-optimal order, as good as the computationally expensive median MC estimator.

Background: The Netflix Problem

- $n_{1} \approx 480 K, n_{2} \approx 18 K$.
- On average each viewer rated about 200 movies. Only 1.2% entries were observed.
- Goal: recover the true rating matrix \boldsymbol{A}_{\star}.

Robust Matrix Completion

- Low-rank-plus-sparse structure: $\boldsymbol{A}_{\star}+\boldsymbol{S}+\boldsymbol{E}$.
- Median matrix completion: based on the absolute deviation loss.
- Under absolute deviation loss and the Huber loss, the convergence rates of Elsener and Geer (2018) match with Koltchinskii et al. (2011).
- Alquier et al. (2019) derives the minimax rates of convergence with any Lipschitz loss functions (absolute deviation loss).
(2) Estimations

(3) Theoretical Guarantee

4) Experiments

Trace Regression Model

- N independent pairs $\left(\mathbf{X}_{k}, Y_{k}\right)$,

$$
\begin{equation*}
Y_{k}=\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \mathbf{A}_{\star}\right)+\epsilon_{k}, \quad k=1, \ldots, N . \tag{1}
\end{equation*}
$$

- The elements of $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{N}\right)$ are N i.i.d. random noise variables independent of the design matrices.
- The design matrices \boldsymbol{X}_{k} :

$$
\mathcal{X}=\left\{\boldsymbol{e}_{j}\left(n_{1}\right) \boldsymbol{e}_{k}\left(n_{2}\right)^{\mathrm{T}}: j=1, \ldots, n_{1} ; k=1, \ldots, n_{2}\right\}
$$

Regularized Least Absolute Deviation Estimator

- $\mathbf{A}_{\star}=\left(A_{\star, i j}\right)_{i, j=1}^{n_{1}, n_{2}} \in \mathbb{R}^{n_{1} \times n_{2}}, \mathbb{P}(\epsilon \leq 0)=0.5: A_{\star, i j}$ is the median of $Y \mid \mathbf{X} . \mathcal{B}(a, n, m)=\left\{\mathbf{A} \in \mathbb{R}^{n \times m}:\|\mathbf{A}\|_{\infty} \leq a\right\}$ and $\mathbf{A}_{\star} \in \mathcal{B}(a, n, m)$.
- We use the absolute deviation loss:

$$
\mathbf{A}_{\star}=\underset{\mathbf{A} \in \mathcal{B}\left(a, n_{1}, n_{2}\right)}{\arg \min } \mathbb{E}\left\{\left|Y-\operatorname{tr}\left(\mathbf{X}^{\mathrm{T}} \mathbf{A}\right)\right|\right\}
$$

- To encourage a low-rank solution,

$$
\widehat{\mathbf{A}}_{\text {LADMC }}=\underset{\mathbf{A} \in \mathcal{B}\left(a, n_{1}, n_{2}\right)}{\arg \min } \frac{1}{N} \sum_{k=1}^{N}\left|Y_{k}-\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \mathbf{A}\right)\right|+\lambda_{N}^{\prime}\|\mathbf{A}\|_{*} .
$$

- Common computational strategies based on proximal gradient method inapplicable (Sum of two non-differentiable terms).
- Alquier et al. (2019) use ADMM, when the sample size and the matrix dimensions are large, slow and not scalable in practice.

Distributed Initial Estimator

$m_{1}\left\{\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline ? & 2 & ? & & & & ? & 3 & ? \\ \hline 5 & ? & ? & \cdots & \cdots & \cdots & ? & ? & 4 \\ \hline ? & 3 & ? & & & & ? & 1 & ? \\ \hline & \vdots & & \ddots & & & & \vdots & \\ \hline & \vdots & & & \ddots & & & \vdots & \\ \hline ? & 4 & ? & & & & ? & 2 & ? \\ \hline 2 & 5 & ? & \cdots & \cdots & \cdots & ? & 1 & 5 \\ \hline ? & 1 & ? & & & & ? & 3 & ? \\ \hline\end{array}\right.$$n_{n_{1}}^{m_{2}}$

Figure: An example of dividing a matrix into sub-matrices.
$\widehat{\mathbf{A}}_{\mathrm{LADMC}, I}=\underset{\mathbf{A}_{l} \in \mathcal{B}\left(a, m_{1}, m_{2}\right)}{\arg \min } \frac{1}{N_{l}} \sum_{k \in \boldsymbol{\Omega}_{l}}\left|Y_{k}-\operatorname{tr}\left(\mathbf{X}_{l, k}^{\mathrm{T}} \mathbf{A}_{l}\right)\right|+\lambda_{N_{l}, l}\left\|\mathbf{A}_{l}\right\|_{*}$.

The Idea of Refinement

- $L(\mathbf{A} ;\{Y, \mathbf{X}\})=\left|Y-\operatorname{tr}\left(\mathbf{X}^{\mathrm{T}} \mathbf{A}\right)\right|$. The Newton-Raphson iteration:

$$
\operatorname{vec}\left(\mathbf{A}_{1}\right)=\operatorname{vec}\left(\widehat{\mathbf{A}}_{0}\right)-\mathbf{H}\left(\widehat{\mathbf{A}}_{0}\right)^{-1} \mathbb{E}_{(Y, \mathbf{X})}\left[\boldsymbol{I}\left(\widehat{\mathbf{A}}_{0} ;\{Y, \mathbf{X}\}\right)\right]
$$

where $\widehat{\mathbf{A}}_{0}$ is an initial estimator; $\boldsymbol{I}(\mathbf{A} ;\{Y, \mathbf{X}\})$ is the sub-gradient and $\mathbf{H}(\mathbf{A})$ is the Hessian matrix.

- When $\widehat{\mathbf{A}}_{0}$ is close to the minimizer \mathbf{A}_{\star},

$$
\begin{aligned}
& \operatorname{vec}\left(\mathbf{A}_{1}\right) \approx \operatorname{vec}\left(\widehat{\mathbf{A}}_{0}\right)-[2 f(0) \operatorname{diag}(\boldsymbol{\Pi})]^{-1} \mathbb{E}_{(Y, \mathbf{X})}\left[I\left(\widehat{\mathbf{A}}_{0} ;\{Y, \mathbf{X}\}\right)\right] \\
& =\mathbb{E}_{(Y, \mathbf{X})}\left\{\operatorname{vec}\left(\widehat{\mathbf{A}}_{0}\right)-[f(0)]^{-1}\left(\mathbb{I}\left[Y \leq \operatorname{tr}\left(\mathbf{X}^{\mathrm{T}} \widehat{\mathbf{A}}_{0}\right)\right]-\frac{1}{2}\right) \mathbb{1}_{n_{1} n_{2}}\right\} \\
& =\left\{\mathbb{E}_{(Y, \mathbf{X})}\left[\operatorname{vec}(\mathbf{X}) \operatorname{vec}(\mathbf{X})^{\mathrm{T}}\right]\right\}^{-1} \mathbb{E}_{(Y, \mathbf{X})}\left(\operatorname{vec}(\mathbf{X}) \tilde{Y}^{0}\right)
\end{aligned}
$$

where $\boldsymbol{\Pi}=\left(\pi_{1,1}, \ldots, \pi_{n_{1}, n_{2}}\right)^{\mathrm{T}}, \pi_{s t}=\operatorname{Pr}\left(\mathbf{X}_{k}=\mathbf{e}_{s}\left(n_{1}\right) \mathbf{e}_{t}^{\mathrm{T}}\left(n_{2}\right)\right)$, and the theoretical pseudo data

$$
\widetilde{Y}^{o}=\operatorname{tr}\left(\mathbf{X}^{\mathrm{T}} \widehat{\mathbf{A}}_{0}\right)-[f(0)]^{-1}\left(\mathbb{I}\left[Y \leq \operatorname{tr}\left(\mathbf{X}^{\mathrm{T}} \widehat{\mathbf{A}}_{0}\right)\right]-\frac{1}{2}\right)
$$

The First Iteration Refinement Details

- $\operatorname{vec}\left(\mathbf{A}_{1}\right) \approx \arg \min _{\mathbf{A}} \mathbb{E}_{(Y, \mathbf{X})}\left\{\widetilde{Y}^{o}-\operatorname{tr}\left(\mathbf{X}^{\mathrm{T}} \mathbf{A}\right)\right\}^{2}$.
- Choice of the initial estimator: $\widehat{\mathbf{A}}_{0}$ satisfies certain rate Condition.
- $K(x)$: kernel function; $h>0$: the bandwidth.

$$
\widehat{f}(0)=\frac{1}{N h} \sum_{k=1}^{N} K\left(\frac{Y_{k}-\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \widehat{\mathbf{A}}_{0}\right)}{h}\right) .
$$

- Let $\widetilde{\mathbf{Y}}=\left(\widetilde{Y}_{k}\right)$, denote

$$
\widetilde{Y}_{k}=\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \widehat{\mathbf{A}}_{0}\right)-[\widehat{f}(0)]^{-1}\left(\mathbb{I}\left[Y_{k} \leq \operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \widehat{\mathbf{A}}_{0}\right)\right]-\frac{1}{2}\right) .
$$

- By using $\widetilde{\mathbf{Y}}$, one natural estimator is given by

$$
\widehat{\mathbf{A}}=\underset{\mathbf{A} \in \mathcal{B}\left(a, n_{1}, n_{2}\right)}{\arg \min } \frac{1}{N} \sum_{k=1}^{N}\left(\widetilde{Y}_{k}-\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \mathbf{A}\right)\right)^{2}+\lambda_{N}\|\mathbf{A}\|_{*}
$$

The t-th Iteration Refinement Details

- Let $h_{t} \rightarrow 0$ is the bandwidth for the t-th iteration,

$$
\widehat{f}^{(t)}(0)=\frac{1}{N h_{t}} \sum_{k=1}^{N} K\left(\frac{Y_{k}-\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \widehat{\mathbf{A}}^{(t-1)}\right)}{h_{t}}\right) .
$$

- Similarly, for each $1 \leq k \leq N$, define

$$
\widetilde{Y}_{k}^{(t)}=\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \widehat{\mathbf{A}}^{(t-1)}\right)-\left(\widehat{f}^{(t)}(0)\right)^{-1}\left(\mathbb{I}\left[Y_{k} \leq \operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \widehat{\mathbf{A}}^{(t-1)}\right)\right]-\frac{1}{2}\right) .
$$

- We propose the following estimator

$$
\widehat{\mathbf{A}}^{(t)}=\underset{\mathbf{A} \in \mathcal{B}\left(a, n_{1}, n_{2}\right)}{\arg \min } \frac{1}{N} \sum_{k=1}^{N}\left(\widetilde{Y}_{k}^{(t)}-\operatorname{tr}\left(\mathbf{X}_{k}^{\mathrm{T}} \mathbf{A}\right)\right)^{2}+\lambda_{N, t}\|\mathbf{A}\|_{*} .
$$

(3) Theoretical Guarantee

4 Experiments

Notations

- $n_{+}=n_{1}+n_{2}, n_{\text {max }}=\max \left\{n_{1}, n_{2}\right\}$ and $n_{\text {min }}=\min \left\{n_{1}, n_{2}\right\}$. Denote $r_{\star}=\operatorname{rank}\left(\mathbf{A}_{\star}\right)$.
- In additional to some regular conditions, the initial estimator $\widehat{\mathbf{A}}_{0}$ satisfies $\left(n_{1} n_{2}\right)^{-1 / 2}\left\|\widehat{\mathbf{A}}_{0}-\mathbf{A}_{\star}\right\|_{F}=O_{\mathrm{P}}\left(\left(n_{1} n_{2}\right)^{-1 / 2} a_{N}\right)$, where the initial rate $\left(n_{1} n_{2}\right)^{-1 / 2} a_{N}=o(1)$.
- Denote the initial rate $a_{N, 0}=a_{N}$ and define that

$$
a_{N, t}=\sqrt{\frac{r_{\star}\left(n_{1} n_{2}\right) n_{\max } \log \left(n_{+}\right)}{N}}+\frac{n_{\min }}{\sqrt{r_{\star}}}\left(\frac{\sqrt{r_{\star}} a_{N, 0}}{n_{\min }}\right)^{2^{t}} .
$$

Convergence Results of Repeated Refinement Estimator

Theorem (Repeated refinement)

Suppose that certain regular conditions hold and $\mathbf{A}_{\star} \in \mathcal{B}\left(a, n_{1}, n_{2}\right)$. By choosing h_{t} and $\lambda_{N, t}$ to be certain orders, we have

$$
\frac{\left\|\widehat{\mathbf{A}}^{(t)}-\mathbf{A}_{\star}\right\|_{F}^{2}}{n_{1} n_{2}}=O_{P}\left[\max \left\{\sqrt{\frac{\log \left(n_{+}\right)}{N}}, r_{\star}\left(\frac{n_{\max } \log \left(n_{+}\right)}{N}+\frac{a_{N, t-1}^{4}}{n_{\min }^{2}\left(n_{1} n_{2}\right)}\right)\right\}\right]
$$

$t \geq \log \left\{\frac{\log \left(r_{\star}^{2} n_{\max }^{2} \log \left(n_{+}\right)\right)-\log \left(n_{\min } N\right)}{c_{0} \log \left(r_{\star} a_{N, 0}^{2}\right)-2 c_{0} \log \left(n_{\text {min }}\right)}\right\} / \log (2), \quad$ for some $\quad c_{0}>0$,

- The convergence rate of $\widehat{\mathbf{A}}^{(t)}$ becomes $r_{\star} n_{\max } N^{-1} \log \left(n_{+}\right)$which is the near-optimal rate $r_{\star} n_{\max } N^{-1}$ upto a logarithmic factor.
- Under certain condition, t is of constant order.

(2) Estimations

(3) Theoretical Guarantee

(4) Experiments

Synthetic Data Generation

- $\mathbf{A}_{\star}=\mathbf{U V} \mathbf{V}^{\mathrm{T}}$, where the entries of $\mathbf{U} \in \mathbb{R}^{n_{1} \times r}$ and $\mathbf{V} \in \mathbb{R}^{n_{2} \times r}$ were all drawn from $\mathcal{N}(0,1)$ independently.
- Set $r=3$, chose $n_{1}=n_{2}: 400$, repeat 500 times.
- The missing rate was 0.2 , we adopted the uniform missing mechanism.
- Four noise distributions:

S1 Normal: $\epsilon \sim \mathcal{N}(0,1)$.
S2 Cauchy: $\epsilon \sim$ Cauchy $(0,1)$.
S3 Exponential: $\epsilon \sim \exp (1)$.
S4 t-distribution with degree of freedom 1: $\epsilon \sim \mathrm{t}_{1}$.

- Cauchy distribution is a very heavy-tailed distribution and its first moment (expectation) does not exist.

Comparison Methods

(a) BLADMC: Blocked Least Absolute Deviation Matrix Completion $\widehat{\mathbf{A}}_{\text {LADMC, } 0}$. Number of row subsets $I_{1}=2$, number of column subsets $I_{2}=2$.
(b) ACL: Least Absolute Deviation Matrix Completion with nuclear norm penalty based on the computationally expensive ADMM algorithm proposed by Alquier et al. (2019).
c) MHT: The squared loss estimator with nuclear norm penalty proposed by Mazumder et al. (2010).

Simulation Results for Noise Distribution S1 and S2

Table: The average RMSEs, MAEs, estimated ranks and their standard errors (in parentheses) of DLADMC, BLADMC, ACL and MHT.

(T)		DLADMC	BLADMC
	RMSE	$0.5920(0.0091)$	$0.7660(0.0086)$
S1(4)	MAE	$0.4273(0.0063)$	$0.5615(0.006)$
	rank	$52.90(2.51)$	$400(0.00)$
	RMSE	$0.9395(0.0544)$	$1.7421(0.3767)$
S2(5)	MAE	$0.6735(0.0339)$	$1.2061(0.1570)$
	rank	$36.49(7.94)$	$272.25(111.84)$
(T)		ACL	MHT
	RMSE	$0.5518(0.0081)$	$0.4607(0.0070)$
S1(4)	MAE	$0.4031(0.0056)$	$0.3375(0.0047)$
	rank	$400(0.00)$	$36.89(1.79)$
	RMSE	$1.8236(1.1486)$	$106.3660(918.5790)$
S2(5)	MAE	$1.2434(0.5828)$	$1.4666(2.2963)$
	rank	$277.08(170.99)$	$1.25(0.50)$

Simulation Results for Noise Distribution S3 and S4

Table: The average RMSEs, MAEs, estimated ranks and their standard errors (in parentheses) of DLADMC, BLADMC, ACL and MHT.

(T)		DLADMC	BLADMC
	RMSE	$0.4868(0.0092)$	$0.6319(0.0090)$
S3(5)	MAE	$0.3418(0.0058)$	$0.4484(0.0057)$
	rank	$66.66(1.98)$	$400(0.00)$
	RMSE	$1.1374(0.8945)$	$1.6453(0.2639)$
S4(4)	MAE	$0.8317(0.7370)$	$1.1708(0.1307)$
	rank	$47.85(13.22)$	$249.16(111.25)$
(T)		ACL	MHT
	RMSE	$0.4164(0.0074)$	$0.4928(0.0083)$
S3(5)	MAE	$0.3121(0.0054)$	$0.3649(0.0058)$
	rank	$400(0.00)$	$37.91(1.95)$
	RMSE	$1.4968(0.6141)$	$98.851(445.4504)$
S4(4)	MAE	$1.0792(0.3803)$	$1.4502(1.1135)$
	rank	$237.05(182.68)$	$1.35(0.71)$

MovieLens 100K Results

Table: The RMSEs, MAEs and estimated ranks.

		DLADMC	BLADMC	ACL	MHT
RawA	RMSE	0.9235	0.9451	0.9258	0.9166
	MAE	0.7233	0.7416	0.7252	0.7196
	rank	4	254.33	530	509
	RMSE	0.9352	0.9593	0.9376	0.9304
	MAE	0.7300	0.7498	0.7323	0.7280
	rank	51	541	521	58
	t	244.73	60.30	448.55	29.60
	RMSE	1.0486	1.0813	1.0503	1.0820
	MAE	0.8568	0.8833	0.8590	0.8971
	rank	38	493	410	3
	t	255.25	89.65	426.78	10.41
	RMSE	1.0521	1.0871	1.0539	1.0862
OutB	MAE	0.8616	0.8905	0.8628	0.9021
	rank	28	486	374	6
	t	260.79	104.97	809.26	10.22

Thank you!

