Private Reinforcement Learning with PAC and Regret Guarantees

Giuseppe Vietri

University of Minnesota

Akshay Krishnamurthy

Microsoft Research

Borja Balle

Deepmind

Steven Wu

University of Minnesota

Reinforcement Learning

RL in healthcare

- Agent → Provider
- Environment → Patients
- Observations → Symptoms
- Actions → Treatments
- Reward → patient improves
- Privacy of patients?

Episodic RL Protocol

Input: Learning Agent \mathcal{M} , User sequence $U = (\mathfrak{D}, \mathfrak{D}, \ldots)$

Episode Initialize: π_0

Repeat H times $a_h^{(1)} = \pi_0 \left(s_h^{(1)}, h \right)$ $r_h^{(1)}$

Update: $\pi_1 \leftarrow \mathcal{M}$

Repeat H times $a_h^{(2)} = \pi_1 \left(s_h^{(2)}, h \right) - \mathcal{M}$ $r_h^{(2)}$

Update: $\pi_2 \leftarrow \mathcal{M}$

4

S = Number of States.

A = Number of Actions.

H = Time-steps per episode.

Main Results: A Privacy Formulation for RL

Let \mathscr{M} be a RL algorithm.

 ${\mathcal M}$ must satisfy ϵ -Joint Differential Privacy Under Continual Observation.

Main Results

Private

	PAC	Regret
Upper Bounds	$\left(\left(\begin{array}{ccc} \alpha^2 & \epsilon \alpha \end{array} \right) \right)$	$\widetilde{O}\left(H^2\sqrt{SAT} + \frac{S^2AH^4}{\epsilon}\right)$
Lower Bound	$\widetilde{\Omega}\left(\left(\frac{SAH^2}{\alpha^2} + \frac{SAH}{\epsilon\alpha}\right)\right)$	$\widetilde{\Omega}\left(\sqrt{HSAT} + \frac{SAH}{\epsilon}\right)$

Prior work. non-Private

	PAC	Regret
Upper Bounds	$\widetilde{O}\left(\frac{SAH^4}{\alpha^2}\right)$ [Dann et al. 2017]	$\widetilde{O}\left(\sqrt{SAHT}\right)$ [Azar et al. 2017]
Lower Bounds	$\sim \left(SAH^3\right)$	$\widetilde{\Omega}\left(\sqrt{\mathit{SAHT}} ight)$ [Jaksch et al. 2010]

PUCB: A private RL Algorithm.

- **PUCB** is a private version of the **Upper-Bound** the **Expected** next **Value** algorithm (**UBEV**) [Dann et al., 2017].
- Compute an optimistic Q-value function using standard batch Q-learning updates with an optimism bonus.
- Keeps track of rewards and dynamics estimates.
- Follows a greedy policy: $\pi_t(s,h) = \arg\max_{a^*} Q(s,a^*,h)$

Q Learning

Without privacy:

For t = 1..., T:

$$Q \leftarrow$$
 OptimismticPlanning $(\hat{n}, \hat{r}, \widehat{m})$

 $s_1^{(t)} \sim \langle \text{uniform distribution over states} \rangle$

For h = 1..., H:

$$a_h^{(t)} = \arg \max_{a^*} Q(s_h^{(t)}, a^*, h)$$

$$r_h^{(t)} \sim R(s_h^{(t)}, a_h^{(t)}, h), s_{h+1}^{(t)} \sim P(\cdot \mid s_h^{(t)}, a_h^{(t)}, h)$$

Increment counters:
$$\widehat{n}\left(s_h^{(t)}, a_h^{(t)}, h\right)$$
,

$$\widehat{r}$$
 $\left(s_h^{(t)}, a_h^{(t)}, h\right), \widehat{m}$ $\left(s_h^{(t)}, a_h^{(t)}, h, s_{h+1}^{(t)}\right)$

With Privacy

For t = 1..., T:

$$Q \leftarrow$$
 PrivateOptimismticPlanning $(\widetilde{n}, \widetilde{r}, \widetilde{m})$

 $s_1^{(t)} \sim \langle \text{uniform distribution over states} \rangle$

For
$$h = 1..., H$$
:

$$a_h^{(t)} = \arg \max_{a^*} Q(s_h^{(t)}, a^*, h)$$

$$r_h^{(t)} \sim R(s_h^{(t)}, a_h^{(t)}, h), s_{h+1}^{(t)} \sim P(\cdot | s_h^{(t)}, a_h^{(t)}, h)$$

Increment private counters: $\widetilde{n}\left(s_h^{(t)}, a_h^{(t)}, h\right)$,

$$\widetilde{r}\left(s_{h}^{(t)}, a_{h}^{(t)}, h\right), \widetilde{m}\left(s_{h}^{(t)}, a_{h}^{(t)}, h, s_{h+1}^{(t)}\right)$$

Standard Differential Privacy (DP)

[Dwork et al., 2006]

Two datasets

are neighbors if the are different on only one row.

Definition: Mechanism M satisfies ε -differential privacy if, for all neighboring datasets and for all $r \in \mathrm{range}(M)$

$$\Pr[M(\mathbf{S}) = r] \le e^{\varepsilon} \Pr[M(\mathbf{S}) = r]$$

Why Is DP not Applicable?

• If the algorithm must satisfy **D**ifferential **P**rivacy then for any two states s, s', it holds that

$$\Pr\left[\pi_t\left(s,h\right)=a\right]\sim\Pr\left[\pi_t\left(s',h\right)=a\right]$$

Joint Differential Privacy Definition

$$U=(0,0,\dots,0)$$
 t-th users are different $U'=(0,0,\dots,0)$

U and U' are t-neighboring user sequences

Definition: A mechanism \mathcal{M} is ε -jointly differentially private if for all t, all t-neighboring user sequences U, U' and all future events $E \subseteq \mathscr{A}^{H \times [T-1]}$ we have

$$\Pr\left[\mathcal{M}_{-t}(U) \in E\right] \le e^{\varepsilon} \Pr\left[\mathcal{M}_{-t}(U') \in E\right]$$

Event Counters

Total counters: $2SAH + S^2AH$

Use Binary mechanism from [Dwork et at., 2010] and [Chan et al., 2011].

If $\widetilde{n}(s, a, h) \longleftarrow$ Binary Mechanism With Privacy Parameter $\frac{\varepsilon}{H}$

The **composition** of all counters satisfies ε -DP [Hsu et al., 2014].

$$\left| \widetilde{n}(s, a, h) - \widehat{n}(s, a, h) \right| \le \frac{H}{\varepsilon} \log(T)^{5/2} \log(2/\beta) := E_{\varepsilon}$$

Balancing Exploration/Exploitation with Optimism.

Without privacy:

$$\widehat{Q}^{+}(s,a,h) = \widehat{Q}(s,a,h) + \widehat{\phi}(s,a,h)$$

Sampling error
[Dann et al. 2017]

Confidence term

due to privacy.

[This work]

Confidence due to

With privacy:

$$\widetilde{Q}^+(s,a,h) = \widetilde{Q}(s,a,h) + \widetilde{\phi}(s,a,h) + \widetilde{\psi}(s,a,h)$$

$$\widehat{\phi}(s,a,h) = (1+H)\sqrt{\frac{T/\beta}{\widehat{n}(s,a,h)}} \qquad \widetilde{\psi}(s,a,h) = (1+SH)\left(\frac{3E_{\varepsilon}}{\widetilde{n}(s,a,h)} + \frac{2E_{\varepsilon}^2}{\widetilde{n}(s,a,h)^2}\right)$$

JDP Proof: Billboard Lemma

Theorem: Algorithm PUCB satisfies ε -joint differential privacy.

- We use the billboard lemma from [Hsu et al., 2016]
- The billboard lemma: An algorithm is JDP if the output sent to each user is a function of the user's private data and a common signal computed using standard differential privacy.
- For example:

 $S_h^{(t)}$ is part of user t private data

. The output for user t is: $a_h^{(t)} = \arg\max_{a^*} Q(s_h^{(t)}, a^*, h)$

The Q-function was computed using ε -differential privacy

PAC Upper Bound Proof: Optimism

$$\widehat{Q}^{+}(s,a,h) = \frac{\widehat{r}(s,a,h) + \sum_{s'} \widetilde{V}_{h+1}(s') \widehat{m}(s,a,h,s')}{\widehat{n}(s,a,h)} + \widehat{\phi}(s,a,h)$$

$$\widehat{Q}^{+}(s,a,h) \leq \frac{\widetilde{r}(s,a,h) + E_{\varepsilon}}{\widetilde{n}(s,a,h) - E_{\varepsilon}} + \sum_{s'} \widetilde{V}_{h+1}(s')(\widetilde{m}(s,a,h,s') + E_{\varepsilon})}{\widetilde{n}(s,a,h) - E_{\varepsilon}} + \widehat{\phi}(s,a,h)$$

Case 1: If $\widetilde{n}(s, a, h) \geq 2E_{\varepsilon}$ the following holds: $\frac{1}{\widetilde{n}(s, a, h) - E_{\varepsilon}} \leq \left(\frac{1}{\widetilde{n}(s, a, h)} + \frac{2E_{\varepsilon}}{\widetilde{n}(s, a, h)^2}\right)$

$$\widehat{Q}^{+}(s,a,h) \leq \widetilde{Q}(s,a,h) + \left(\frac{1}{\widetilde{n}(s,a,h)} + \frac{\widetilde{2E_{\varepsilon}}}{\widetilde{n}(s,a,h)^{2}}\right) (1 + SH)E_{\varepsilon} + \widetilde{\phi}(s,a,h) = \widetilde{Q}^{+}(s,a,h)$$

$$\widetilde{\psi}(s,a,h)$$

Case 2: If $\widetilde{n}(s,a,h) < 2E_{\varepsilon}$ then we make $\widetilde{Q}^+(s,a,h) = H$

PAC Lower Bound Proof

1. Lower bound for private-best-arm-identification problem.

1.
$$\widetilde{\Omega} \left(\frac{A}{\varepsilon \alpha} \ln \frac{1}{4\beta} \right)$$

- 2. We consider a simpler: Public Initial State Setting.
 - 1. Each initial states $\{1,...,n\}$ is a private best-arm-identification MAB problem.
- 3. Therefore learner must make a total of at least $\frac{SAH}{24\epsilon\alpha} \ln \frac{1}{4\beta}$ mistakes.
- 4. ε -JDP $\Longrightarrow \varepsilon$ -JDP in the public initial state setting.

Conclusion

- Introduced a meaningful formulation of privacy for RL.
- A private optimism based algorithm with PAC and regret Guarantees.
- First analysis of lower bounds for private RL.