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Reinforcement Learning

Observation, Reward

Action



RL In healthcare

Agent — Provider LN /L
Environment — Patients
Observations — Symptoms
Actions — Treatments

Reward — patient improves

Privacy of patients”?



Episodic RL Protocol

Input: Learning Agent ., User sequence U= (Q,:', )

Initialize: 7,

S = Number of States.

A = Number of Actions.

H = Time-steps per episode.

Update: 7, < A



Main Results: A Privacy Formulation for RL

Let ./ be a RL algorithm.

" users
Input: U= (€ 2 . ‘/) [ is the total number
. =\"9 e, ..., \ of users/episodes.
a{l) al(z) al(t) al(T)
Output: M (U) = : :

) a2 |a0)  |ar

A must satisfy e-Joint Differential Privacy Under Continual Observation.
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Main Results
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PUCB: A private RL Algorithm.

PUCB is a private version of the Upper-Bound the Expected next Value
algorithm (UBEV) [Dann et al., 2017].

Compute an optimistic Q-value function using standard batch Q-learning
updates with an optimism bonus.

Keeps track of rewards and dynamics estimates.

Follows a greedy policy: z(s, h) = argmax Q(s, a*, h)
a*



Q Learning

Without privacy:

Forr=1...,T:

/\/\/\)

() «—— OptimismticPlanning (n, r, m

Sl(t) ~ {uniform distribution over states)

Forh=1... H:

a}Et) = arg max Q(s\", a*, h)

a>1<

r0 ~ R(s®,a®, )5~ P(- |50, h)

Increment counters: n ( }Et), (t),h>,

) ) (@ 40 (1)
(h’ h)m(h hShl)

With Privacy

Forr=1...,T:

NN~)

() «<— PrivateOptimismticPlanning ( » ( , M

Sl(t) ~ {uniform distribution over states)

Forh=1... H:

(t) = arg max O(s\", a*, h)

a*

K0~ R(s®,a®, ), 5O~ P(- |50, a, h)

h’h’

® @ ® @ (1)
(h’ 9h)5m<h9 hShl)

Increment private counters: n( D qW h)



Standard Differential Privacy (DP)

[Dwork et al., 20006]

A
B

-

are neighbors if the are different on only one row.

Two datasets

o Q o>

Definition: Mechanism M satisfies e-differential privacy if, for all neighboring
datasets and for all r € range(M)

PrIM(E) = r] < e®Pr[M(E) = 7]



Why Is DP not Applicable?

* |f the algorithm must satisfy Differential Privacy then for any two states

s, s’ it holds that

Pr lﬂ't (s, h) = al ~ Pr lﬂt (S’, h) = a]
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Joint Differential Privacy Definition

U: (Q!':’5 LI ¥ I:L )
U/: (“!':’! LI ¥ IiL )

U and U’ are t-neighboring user sequences

Definition: A mechanism .Z is e-jointly differentially private if for all t, all t-

neighboring user sequences U, U’ and all future events E C o/ HXIT=11 \ye
have

Pr|_(U) € E| < e*Pr|M_(U') € E|
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Event Counters

Total counters: 2SAH + S*AH

Use Binary mechanism from [Dwork et at., 2010] and [Chan et al., 2011].

E

Iif n(s,a, h) <— Binary Mechanism With Privacy Parameter —

The composition of all counters satisfies €-DP [Hsu et al., 2014].

(s, a,h) — A(s,a,h) | < =log(T)**log(2/p) := E,
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Balancing Exploration/Exploitation with Optimism.

Confidence due to
sampling error
- [Dann et al. 2017]

Without privacy: /Q\+(Sa a, h) = /Q\(Sa da, h) T zb\(S, da, h) Confidence term
due to privacy.
/ [This work]
With privacy: 5"(& a,h) = E(S, a,h) + fg;(s, a,h)+ w(s,a,h)

. il — oL 2E,
poam=ariyasem VTG T e
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JDP Proof: Billboard Lemma

Theorem: Algorithm PUCB satisfies &-joint differential privacy.

 \We use the billboard lemma from [Hsu et al., 2016]

* The billboard lemma: An algorithm is JDP if the output sent to each user is

a function of the user’s private data and a common signal computed using
standard differential privacy.

e For example: Slflt) Is part of user 7 private data

d

. The output for user t is: a(t) = arg max O(sV, a*, h)

\ The Q-function was computed

14 using e-differential privacy



PAC Upper Bound Proof: Optimism

r(s,a,h)+ ) V, (shm(s,ah,s)
A - B (s,a, )
n(s,a,h)

0 *(s,a,h) =

Fs,a,h)+E.+ YV, ()(m(s,a,hs)+E)

., |
Q7(s,a,h) < oo L - & (s,a,h)

1 1 2E.
Case 1: If n(s, a, h) > 2E, the following holds: (s, a.n) - E, = (,"{(S, ol  .a h)z>

"+ Y 1 | QE oy _ N+
O (s,a,h) < 0O(s,a,h)+ (ﬁ(s,a,h) | ﬁ(s,a,h)z)(l +SH)E, + ¢ (s,a,h) = OQ7(s,a,h)

T Y(s.a.h)
Case 2: If n(s,a, h) < 2E, then we make Q "(s,a,h) = H



PAC Lower Bound Proof

1. Lower bound for private-best-arm-identification problem.

AH 1
# mistakes = lIl —

~<A 1 ) 24ea 4/
1. Q[ —1In— /
ea 4p

2. We consider a simpler: Public Initial State Setting.

1. Each initial states {1,...,n} is a private best-arm-
identification MAB problem.

SAH 1

T In v mistakes.

3. Therefore learner must make a total of at least

4. e-dDP — &-JDP In the public initial state setting.
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Conclusion

* Introduced a meaningful formulation of privacy for RL.
* A private optimism based algorithm with PAC and regret Guarantees.

* First analysis of lower bounds for private RL.
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